17 research outputs found
Hematopoietic cell transplantation in severe combined immunodeficiency : The SCETIDE 2006-2014 European cohort
Publisher Copyright: © 2021 The AuthorsBackground: Hematopoietic stem cell transplantation (HSCT) represents a curative treatment for patients with severe combined immunodeficiency (SCID), a group of monogenic immune disorders with an otherwise fatal outcome. Objective: We performed a comprehensive multicenter analysis of genotype-specific HSCT outcome, including detailed analysis of immune reconstitution (IR) and the predictive value for clinical outcome. Methods: HSCT outcome was studied in 338 patients with genetically confirmed SCID who underwent transplantation in 2006-2014 and who were registered in the SCETIDE registry. In a representative subgroup of 152 patients, data on IR and long-term clinical outcome were analyzed. Results: Two-year OS was similar with matched family and unrelated donors and better than mismatched donor HSCT (P 0.5 × 10e3/μL at +1 year were identified as independent predictors of favorable clinical and immunologic outcome. Conclusion: Recent advances in HSCT in SCID patients have resulted in improved OS and EFS in all genotypes and donor types. To achieve a favorable long-term outcome, treatment strategies should aim for optimal naive CD4 T lymphocyte regeneration.Peer reviewe
Applying 'omics technologies in chemicals risk assessment: Report of an ECETOC workshop
Prevailing knowledge gaps in linking specific molecular changes to apical outcomes and methodological uncertainties in the generation, storage, processing, and interpretation of 'omics data limit the application of 'omics technologies in regulatory toxicology. Against this background, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) convened a workshop Applying 'omics technologies in chemicals risk assessment that is reported herein. Ahead of the workshop, multi-expert teams drafted frameworks on best practices for (i) a Good-Laboratory Practice-like context for collecting, storing and curating 'omics data; (ii) the processing of 'omics data; and (iii) weight-of-evidence approaches for integrating 'omics data. The workshop participants confirmed the relevance of these Frameworks to facilitate the regulatory applicability and use of 'omics data, and the workshop discussions provided input for their further elaboration. Additionally, the key objective (iv) to establish approaches to connect 'omics perturbations to phenotypic alterations was addressed. Generally, it was considered promising to strive to link gene expression changes and pathway perturbations to the phenotype by mapping them to specific adverse outcome pathways. While further work is necessary before gene expression changes can be used to establish safe levels of substance exposure, the ECETOC workshop provided important incentives towards achieving this goal
The genomic organization and expression pattern of the low-affinity Fc gamma receptors (FcγR) in the Göttingen minipig
Safety and efficacy of therapeutic antibodies are often dependent on their interaction with Fc receptors for IgG (FcγRs). The Göttingen minipig represents a valuable species for biomedical research but its use in preclinical studies with therapeutic antibodies is hampered by the lack of knowledge about the porcine FcγRs. Genome analysis and sequencing now enabled the localization of the previously described FcγRIIIa in the orthologous location to human FCGR3A. In addition, we identified nearby the gene coding for the hitherto undescribed putative porcine FcγRIIa. The 1'241 bp long FCGR2A cDNA translates to a 274aa transmembrane protein containing an extracellular region with high similarity to human and cattle FcγRIIa. Like in cattle, the intracellular part does not contain an immunoreceptor tyrosine-based activation motif (ITAM) as in human FcγRIIa. Flow cytometry of the whole blood and single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) of Göttingen minipigs revealed the expression profile of all porcine FcγRs which is compared to human and mouse. The new FcγRIIa is mainly expressed on platelets making the minipig a good model to study IgG-mediated platelet activation and aggregation. In contrast to humans, minipig blood monocytes were found to express inhibitory FcγRIIb that could lead to the underestimation of FcγR-mediated effects of monocytes observed in minipig studies with therapeutic antibodies