48 research outputs found

    The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO<sub>2</sub>) nanosized particles (NSP) and microsized particles (MSP) on biophysical surfactant function after direct particle contact and after surface area cycling <it>in vitro</it>. In addition, TiO<sub>2 </sub>effects on surfactant ultrastructure were visualized.</p> <p>Methods</p> <p>A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml) of TiO<sub>2 </sub>NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope.</p> <p>Results</p> <p>TiO<sub>2 </sub>NSP, but not MSP, induced a surfactant dysfunction. For TiO<sub>2 </sub>NSP, adsorption surface tension (γ<sub>ads</sub>) increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p < 0.01), and surface tension at minimum bubble size (γ<sub>min</sub>) slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p < 0.01) at high TiO<sub>2 </sub>NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γ<sub>ads </sub>(63.6 ± 0.4 mN/m) and γ<sub>min </sub>(21.1 ± 0.4 mN/m). Interestingly, TiO<sub>2 </sub>NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae.</p> <p>Conclusion</p> <p>TiO<sub>2 </sub>nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.</p
    corecore