127 research outputs found
Photoinduced charge separation in Q1D heterojunction materials: Evidence for electron-hole pair separation in mixed-halide solids
Resonance Raman experiments on doped and photoexcited single crystals of
mixed-halide complexes (=Pt; =Cl,Br) clearly indicate charge
separation: electron polarons preferentially locate on PtBr segments while hole
polarons are trapped within PtCl segments. This polaron selectivity,
potentially very useful for device applications, is demonstrated theoretically
using a discrete, 3/4-filled, two-band, tight-binding, extended Peierls-Hubbard
model. Strong hybridization of the PtCl and PtBr electronic bands is the
driving force for separation.Comment: n LaTeX, figures available by mail from JTG ([email protected]
Pressure Tuning of the Charge Density Wave in the Halogen-Bridged Transition-Metal (MX) Solid
We report the pressure dependence up to 95 kbar of Raman active stretching
modes in the quasi-one-dimensional MX chain solid . The data
indicate that a predicted pressure-induced insulator-to-metal transition does
not occur, but are consistent with the solid undergoing either a
three-dimensional structural distortion, or a transition from a charge-density
wave to another broken-symmetry ground state. We show that such a transition
cacan be well-modeled within a Peierls-Hubbard Hamiltonian. 1993 PACS:
71.30.+h, 71.45.Lr, 75.30.Fv, 78.30.-j, 81.40.VwComment: 4 pages, ReVTeX 3.0, figures available from the authors on request
(Gary Kanner, [email protected]), to be published in Phys Rev B Rapid
Commun, REVISION: minor typos corrected, LA-UR-94-246
Recommended from our members
Integration of advanced nuclear materials separation processes
This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results
Recommended from our members
Magnetic separation for soil decontamination
High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology
Recommended from our members
Analysis of gas constituents from sealed containers of plutonium oxide materials.
The safe storage of pure and impure plutonium oxide materials in sealed containers is a current Department of Energy (DOE) concern. Plutonium oxides sorb moisture from the atmosphere, and the subsequent radiolytic and/or chemical decomposition of the water has been thought to generate excessive hydrogen pressures inside sealed containers. Eleven sealed containers with ten grams each of plutonium oxide materials have been studied for up to four years. The sealed materials were representative materials from the DOE complex and contain less than 0.5 weight percent water. The samples were kept at ambient conditions. We report the final gas analysis of the headspace gas of these containers using gas chromatography, mass spectrometry and Raman spectroscopy. The results show that none of the containers have pressurized significantly, and that hydrogen was not generated in significant quantities
Recommended from our members
Gas generation over plutonium oxides in the 94-1 shelf-life surveillance program.
The Department of Energy (DOE) is embarking upon a program to store large quantities of plutonium-bearing materials for up to fifty years. The Los Alamos National Laboratory Shelf Life Project was established to bound the behavior of plutonium-bearing material meeting the DOE 3013 Standard. The shelf life study monitors temperature, pressure and gas composition over oxide materials in a limited number of large-scale 3013 inner containers and in many small-scale containers. For the large-scale study, baseline plutonium oxides, oxides exposed to high-humidity atmospheres, and oxides containing chloride salt impurities are planned. The first large-scale container represents a baseline and contains dry plutonium oxide prepared according to the 3013 Standard. This container has been observed for pressure, temperature and gas compositional changes for less than a year. Results indicate that no detectable changes in pressure and gas composition are observed
Recommended from our members
Hydrothermal processing of radioactive combustible waste
Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture
- …