277 research outputs found

    Skeletal trade-offs in coralline algae in response to ocean acidification

    Get PDF
    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    Polymorphism Data Can Reveal the Origin of Species Abundance Statistics

    Get PDF
    What is the underlying mechanism behind the fat-tailed statistics observed for species abundance distributions? The two main hypotheses in the field are the adaptive (niche) theories, where species abundance reflects its fitness, and the neutral theory that assumes demographic stochasticity as the main factor determining community structure. Both explanations suggest quite similar species-abundance distributions, but very different histories: niche scenarios assume that a species population in the past was similar to the observed one, while neutral scenarios are characterized by strongly fluctuating populations. Since the genetic variations within a population depend on its abundance in the past, we present here a way to discriminate between the theories using the genetic diversity of noncoding DNA. A statistical test, based on the Fu-Li method, has been developed and enables such a differentiation. We have analyzed the results gathered from individual-based simulation of both types of histories and obtained clear distinction between the Fu-Li statistics of the neutral scenario and that of the niche scenario. Our results suggest that data for 10–50 species, with approximately 30 sequenced individuals for each species, may allow one to distinguish between these two theories

    Neutrality and the Response of Rare Species to Environmental Variance

    Get PDF
    Neutral models and differential responses of species to environmental heterogeneity offer complementary explanations of species abundance distribution and dynamics. Under what circumstances one model prevails over the other is still a matter of debate. We show that the decay of similarity over time in rocky seashore assemblages of algae and invertebrates sampled over a period of 16 years was consistent with the predictions of a stochastic model of ecological drift at time scales larger than 2 years, but not at time scales between 3 and 24 months when similarity was quantified with an index that reflected changes in abundance of rare species. A field experiment was performed to examine whether assemblages responded neutrally or non-neutrally to changes in temporal variance of disturbance. The experimental results did not reject neutrality, but identified a positive effect of intermediate levels of environmental heterogeneity on the abundance of rare species. This effect translated into a marked decrease in the characteristic time scale of species turnover, highlighting the role of rare species in driving assemblage dynamics in fluctuating environments

    The Effect of Consumers and Mutualists of Vaccinium membranaceum at Mount St. Helens: Dependence on Successional Context

    Get PDF
    In contrast to secondary succession, studies of terrestrial primary succession largely ignore the role of biotic interactions, other than plant facilitation and competition, despite the expectation that simplified interaction webs and propagule-dependent demographics may amplify the effects of consumers and mutualists. We investigated whether successional context determined the impact of consumers and mutualists by quantifying their effects on reproduction by the shrub Vaccinium membranaceum in primary and secondary successional sites at Mount St. Helens (Washington, USA), and used simulations to explore the effects of these interactions on colonization. Species interactions differed substantially between sites, and the combined effect of consumers and mutualists was much more strongly negative for primary successional plants. Because greater local control of propagule pressure is expected to increase successional rates, we evaluated the role of dispersal in the context of these interactions. Our simulations showed that even a small local seed source greatly increases population growth rates, thereby balancing strong consumer pressure. The prevalence of strong negative interactions in the primary successional site is a reminder that successional communities will not exhibit the distribution of interaction strengths characteristic of stable communities, and suggests the potential utility of modeling succession as the consequence of interaction strengths

    Genetic Organisation, Mobility and Predicted Functions of Genes on Integrated, Mobile Genetic Elements in Sequenced Strains of Clostridium difficile

    Get PDF
    Background: Clostridium difficile is the leading cause of hospital-associated diarrhoea in the US and Europe. Recently the incidence of C. difficile-associated disease has risen dramatically and concomitantly with the emergence of 'hypervirulent' strains associated with more severe disease and increased mortality. C. difficile contains numerous mobile genetic elements, resulting in the potential for a highly plastic genome. In the first sequenced strain, 630, there is one proven conjugative transposon (CTn), Tn5397, and six putative CTns (CTn1, CTn2 and CTn4-7), of which, CTn4 and CTn5 were capable of excision. In the second sequenced strain, R20291, two further CTns were described.Results: CTn1, CTn2 CTn4, CTn5 and CTn7 were shown to excise from the genome of strain 630 and transfer to strain CD37. A putative CTn from R20291, misleadingly termed a phage island previously, was shown to excise and to contain three putative mobilisable transposons, one of which was capable of excision. In silico probing of C. difficile genome sequences with recombinase gene fragments identified new putative conjugative and mobilisable transposons related to the elements in strains 630 and R20291. CTn5-like elements were described occupying different insertion sites in different strains, CTn1-like elements that have lost the ability to excise in some ribotype 027 strains were described and one strain was shown to contain CTn5-like and CTn7-like elements arranged in tandem. Additionally, using bioinformatics, we updated previous gene annotations and predicted novel functions for the accessory gene products on these new elements.Conclusions: The genomes of the C. difficile strains examined contain highly related CTns suggesting recent horizontal gene transfer. Several elements were capable of excision and conjugative transfer. The presence of antibiotic resistance genes and genes predicted to promote adaptation to the intestinal environment suggests that CTns play a role in the interaction of C. difficile with its human host

    Simulating Food Web Dynamics along a Gradient: Quantifying Human Influence

    Get PDF
    Realistically parameterized and dynamically simulated food-webs are useful tool to explore the importance of the functional diversity of ecosystems, and in particular relations between the dynamics of species and the whole community. We present a stochastic dynamical food web simulation for the Kelian River (Borneo). The food web was constructed for six different locations, arrayed along a gradient of increasing human perturbation (mostly resulting from gold mining activities) along the river. Along the river, the relative importance of grazers, filterers and shredders decreases with increasing disturbance downstream, while predators become more dominant in governing eco-dynamics. Human activity led to increased turbidity and sedimentation which adversely impacts primary productivity. Since the main difference between the study sites was not the composition of the food webs (structure is quite similar) but the strengths of interactions and the abundance of the trophic groups, a dynamical simulation approach seemed to be useful to better explain human influence. In the pristine river (study site 1), when comparing a structural version of our model with the dynamical model we found that structurally central groups such as omnivores and carnivores were not the most important ones dynamically. Instead, primary consumers such as invertebrate grazers and shredders generated a greater dynamical response. Based on the dynamically most important groups, bottom-up control is replaced by the predominant top-down control regime as distance downstream and human disturbance increased. An important finding, potentially explaining the poor structure to dynamics relationship, is that indirect effects are at least as important as direct ones during the simulations. We suggest that our approach and this simulation framework could serve systems-based conservation efforts. Quantitative indicators on the relative importance of trophic groups and the mechanistic modeling of eco-dynamics could greatly contribute to understanding various aspects of functional diversity

    Asymmetry in Species Regional Dispersal Ability and the Neutral Theory

    Get PDF
    The neutral assumption that individuals of either the same or different species share exactly the same birth, death, migration, and speciation probabilities is fundamental yet controversial to the neutral theory. Several theoretical studies have demonstrated that a slight difference in species per capita birth or death rates can have a profound consequence on species coexistence and community structure. Whether asymmetry in migration, a vital demographic parameter in the neutral model, plays an important role in community assembly still remains unknown. In this paper, we relaxed the ecological equivalence assumption of the neutral model by introducing differences into species regional dispersal ability. We investigated the effect of asymmetric dispersal on the neutral local community structure. We found that per capita asymmetric dispersal among species could reduce species richness of the local community and result in deviations of species abundance distributions from those predicted by the neutral model. But the effect was moderate compared with that of asymmetries in birth or death rates, unless very large asymmetries in dispersal were assumed. A large difference in species dispersal ability, if there is, can overwhelm the role of random drift and make local community dynamics deterministic. In this case, species with higher regional dispersal abilities tended to dominate in the local community. However, the species abundance distribution of the local community under asymmetric dispersal could be well fitted by the neutral model, but the neutral model generally underestimated the fundamental biodiversity number but overestimated the migration rate in such communities

    Identification of pyrimethamine- and chloroquine-resistant Plasmodium falciparum in Africa between 1984 and 1998: genotyping of archive blood samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the geographical distribution of drug resistance of <it>Plasmodium falciparum </it>is important for the effective treatment of malaria. Drug resistance has previously been inferred mainly from records of clinical resistance. However, clinical resistance is not always consistent with the parasite's genetic resistance. Thus, molecular identification of the parasite's drug resistance is required. In Africa, clinical resistance to pyrimethamine (Pyr) and chloroquine (CQ) was evident before 1980 but few studies investigating the genetic resistance to these drugs were conducted before the late 1990s. In this study, genotyping of genes involved in resistance to Pyr and CQ was performed using archive blood samples from Africa between 1984 and 1998.</p> <p>Methods</p> <p>Parasite DNA was extracted from <it>P. falciparum</it>-infected blood smears collected from travellers returning to Japan from Africa between 1984 and 1998. Genotypes of the dihydrofolate reductase gene (<it>dhfr</it>) and CQ-resistance transporter gene (<it>pfcrt) </it>were determined by polymerase chain reaction amplification and sequencing.</p> <p>Results</p> <p>Genotyping of <it>dhfr </it>and <it>pfcrt </it>was successful in 59 and 80 samples, respectively. One wild-type and seven mutant <it>dhfr </it>genotypes were identified. Three <it>dhfr </it>genotypes lacking the S108N mutation (NRSI, ICSI, IRSI; amino acids at positions 51, 59, 108, and 164 with mutations underlined) were highly prevalent before 1994 but reduced after 1995, accompanied by an increase in genotypes with the S108N mutation. The <it>dhfr </it>IRNI genotype was first identified in Nigeria in 1991 in the present samples, and its frequency gradually increased. However, two double mutants (ICNI and NRNI), the latter of which was exclusively found in West Africa, were more frequent than the IRNI genotype. Only two <it>pfcrt </it>genotypes were found, the wild-type and a Southeast Asian type (CVIET; amino acids at positions 72-76 with mutations underlined). The CVIET genotype was already present as early as 1984 in Tanzania and Nigeria, and appeared throughout Africa between 1984 and 1998.</p> <p>Conclusions</p> <p>This study is the first to report the molecular identification of Pyr- and CQ-resistant genotypes of <it>P. falciparum </it>in Africa before 1990. Genotyping of <it>dhfr </it>and <it>pfcrt </it>using archive samples has revealed new aspects of the evolutionary history of Pyr- and CQ-resistant parasites in Africa.</p

    Seabird Modulations of Isotopic Nitrogen on Islands

    Get PDF
    The transport of nutrients by migratory animals across ecosystem boundaries can significantly enrich recipient food webs, thereby shaping the ecosystems’ structure and function. To illustrate the potential role of islands in enabling the transfer of matter across ecosystem boundaries to be gauged, we investigated the influence of seabirds on nitrogen input on islands. Basing our study on four widely differing islands in terms of their biogeography and ecological characteristics, sampled at different spatial and temporal intervals, we analyzed the nitrogen isotopic values of the main terrestrial ecosystem compartments (vascular plants, arthropods, lizards and rodents) and their relationship to seabird values. For each island, the isotopic values of the ecosystem were driven by those of seabirds, which ultimately corresponded to changes in their marine prey. First, terrestrial compartments sampled within seabird colonies were the most enriched in δ15N compared with those collected at various distances outside colonies. Second, isotopic values of the whole terrestrial ecosystems changed over time, reflecting the values of seabirds and their prey, showing a fast turnover throughout the ecosystems. Our results demonstrate that seabird-derived nutrients not only spread across the terrestrial ecosystems and trophic webs, but also modulate their isotopic values locally and temporally on these islands. The wealth of experimental possibilities in insular ecosystems justifies greater use of these model systems to further our understanding of the modalities of trans-boundary nutrient transfers
    corecore