462 research outputs found

    Interpretation of heart rate variability via detrended fluctuation analysis and alpha-beta filter

    Full text link
    Detrended fluctuation analysis (DFA), suitable for the analysis of nonstationary time series, has confirmed the existence of persistent long-range correlations in healthy heart rate variability data. In this paper, we present the incorporation of the alpha-beta filter to DFA to determine patterns in the power-law behaviour that can be found in these correlations. Well-known simulated scenarios and real data involving normal and pathological circumstances were used to evaluate this process. The results presented here suggest the existence of evolving patterns, not always following a uniform power-law behaviour, that cannot be described by scaling exponents estimated using a linear procedure over two predefined ranges. Instead, the power law is observed to have a continuous variation with segment length. We also show that the study of these patterns, avoiding initial assumptions about the nature of the data, may confer advantages to DFA by revealing more clearly abnormal physiological conditions detected in congestive heart failure patients related to the existence of dominant characteristic scales.Comment: 18 pages, 14 figure

    Ag on Ge(111): 2D X-ray structure analysis of the (Wurzel)3 x (Wurzel)3 superstructure

    Get PDF
    We have studied the Ag/Ge(111)(Wurzel)3 x (Wurzel)3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94+-0.04°A with the centers of the trimers being located at the origins of the (Wurzel)3 x (Wurzel)3 lattice. The Ag layer is incomplete and at least one substrate layer is distorted

    α-Helical Peptides on Plasma-Treated Polymers Promote Ciliation of Airway Epithelial Cells

    Get PDF
    Airway respiratory epithelium forms a physical barrier through intercellular tight junctions, which prevents debris from passing through to the internal environment while ciliated epithelial cells expel particulate-trapping mucus up the airway. Polymeric solutions to loss of airway structure and integrity have been unable to fully restore functional epithelium. We hypothesized that plasma treatment of polymers would permit adsorption of α-helical peptides and that this would promote functional differentiation of airway epithelial cells. Five candidate plasma compositions are compared; Air, N2, H2, H2:N2 and Air:N2. X-ray photoelectron spectroscopy shows changes in at% N and C 1s peaks after plasma treatment while electron microscopy indicates successful adsorption of hydrogelating self-assembling fibres (hSAF) on all samples. Subsequently, adsorbed hSAFs support human nasal epithelial cell attachment and proliferation and induce differentiation at an air-liquid interface. Transepithelial measurements show that the cells form tight junctions and produce cilia beating at the normal expected frequency of 10-11 Hz after 28 days in culture. The synthetic peptide system described in this study offers potential superiority as an epithelial regeneration substrate over present “gold-standard” materials, such as collagen, as they are controllable and can be chemically functionalised to support a variety of in vivo environments. Using the hSAF peptides described here in combination with plasma-treated polymeric surfaces could offer a way of improving the functionality and integration of implantable polymers for aerodigestive tract reconstruction and regeneration

    The application of one-wavelength anomalous scattering. I. Combining results of different methods

    Full text link

    Attractiveness of periodic orbits in parametrically forced systemswith time-increasing friction

    Get PDF
    We consider dissipative one-dimensional systems subject to a periodic force and study numerically how a time-varying friction affects the dynamics. As a model system, particularly suited for numerical analysis, we investigate the driven cubic oscillator in the presence of friction. We find that, if the damping coefficient increases in time up to a final constant value, then the basins of attraction of the leading resonances are larger than they would have been if the coefficient had been fixed at that value since the beginning. From a quantitative point of view, the scenario depends both on the final value and the growth rate of the damping coefficient. The relevance of the results for the spin-orbit model are discussed in some detail.Comment: 30 pages, 6 figure

    A monodisperse transmembrane α-helical peptide barrel

    Get PDF
    The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing

    Modular Design of Self-Assembling Peptide-Based Nanotubes.

    Get PDF
    An ability to design peptide-based nanotubes (PNTs) rationally with defined and mutable internal channels would advance understanding of peptide self-assembly, and present new biomaterials for nanotechnology and medicine. PNTs have been made from Fmoc dipeptides, cyclic peptides, and lock-washer helical bundles. Here we show that blunt-ended α-helical barrels, that is, preassembled bundles of α-helices with central channels, can be used as building blocks for PNTs. This approach is general and systematic, and uses a set of de novo helical bundles as standards. One of these bundles, a hexameric α-helical barrel, assembles into highly ordered PNTs, for which we have determined a structure by combining cryo-transmission electron microscopy, X-ray fiber diffraction, and model building. The structure reveals that the overall symmetry of the peptide module plays a critical role in ripening and ordering of the supramolecular assembly. PNTs based on pentameric, hexameric, and heptameric α-helical barrels sequester hydrophobic dye within their lumens.N.C.B. thanks the EPSRC-funded Bristol Centre for Functional Nanomaterials Centre for Doctoral Training for a postgraduate scholarship (EP/G036780/1). F.T. and D.N.W. thank the Leverhulme Trust for funding (RPG-2012-536). D.N.W. holds a Royal Society Wolfson Research Merit Award.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/jacs.5b0397

    Toward a soluble model system for the amyloid state

    Get PDF
    The formation and deposition of amyloids is associated with many diseases. β-Sheet secondary structure is a common feature of amyloids, but the packing of sheets against one another is distinctive relative to soluble proteins. Standard methods that rely on perturbing a polypeptide’s sequence and evaluating impact on folding can be problematic for amyloid aggregates because a single sequence can adopt multiple conformations and diverse packing arrangements. We describe initial steps toward a minimum-sized, soluble model system for the amyloid state that supports comparisons among sequence variants. Critical to this goal is development of a new linking strategy to enable intersheet association mediated by side chain interactions, which is characteristic of the amyloid state. The linker design we identified should ultimately support exploration of relationships between sequence and amyloid state stability for specific strand-association modes

    Installing hydrolytic activity into a completely <i>de novo </i>protein framework

    Get PDF
    The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine–histidine–glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis
    corecore