128 research outputs found

    EXAFS study of nickel exchanged into zeolite Y

    Get PDF
    EXAFS and near edge spectroscopy were used to monitor changes i n Ni coordination as a function of treatment conditions after aqueous exchange into zeolite Y. Our results suggest that after calcination and dehydration under the conditions of this study, major site occupancy for Ni appears to be in the tri-coordinate exchange sites , and not i n the hexagonal prisms as suggested by previous x-ray diffraction results

    EXAFS study of nickel tetracarbonyl and nickel clusters in zeolite Y

    Get PDF
    Adsorption and thermal decomposition of Ni(CO)4 in the cage system of zeolite Y have been studied with EXAFS, electron microscopy and IR spectroscopy , Ni(CO)4 is adsorbed as an intact molecule in both cation - free zeolite Y and NaY. Symmetry changes of the molecule in NaY are assigned to the formation of Na—OC-IMi bridges. Thermal treatment of the Ni(CO)4/NaY adduct leads to loss of CO concomitant with the formation of a binodal Ni phase. A major part of the forms clusters with diameter between 0.5 and about 1.5 nm, in addition to larger crystallites (5-30 nm), sticking at the outer surface of the zeolite matrix., The Ni-Ni scattering amplitude indicates increasing average particle size with increasing temperature

    Dynamic Site Periods for the Jackson Purchase Region of Western Kentucky

    Get PDF
    Bridges, overpasses, and other engineered structures in the Jackson Purchase region of Western Kentucky are, of necessity, built on a thick column of loose to semi-consolidated sediments. Because these sediments tend to amplify seismically induced ground motions at preferred periods, structures with natural periods close to the preferred periods of amplification of the ground motions are particularly vulnerable to damages during an earthquake because of in-phase resonance. For this report, conventional seismic refraction and reflection techniques were used to determine the shearwave velocities of the more poorly consolidated, near-surface sediments for a matrix of sites in the region. Conventional seismic P-wave reflections along with existing drill hole and seismic reflection data in the region were then used to determine the depth to the top of the bedrock at the sites investigated. These data were used in SHAKE91 to calculate the fundamental period of the ground motion at the sites. This period, identified in the study as the dynamic site period, is the period at which ground motions in the sedimentary column are most apt to be amplified as a result of a seismic shear wave propagating from the top of the bedrock to the surface. Based on the results in this report, it is recommended that bridges, overpasses, and other engineered structures built in the region be designed so that their natural periods do not coincide with the fundamental period of the sedimentary column, thereby avoiding damage during an earthquake as a result of in-phase resonance

    Seismic Reflection Imaging of the Low-Angle Panamint Normal Fault System, Eastern California

    Get PDF
    Shallowly dipping (<30°) low-angle normal faults (LANFs) have been documented globally; however, examples of active LANFs in continental settings are limited. The western margin of the Panamint Range in eastern California is defined by a LANF that dips west beneath Panamint Valley and has evidence of Quaternary motion. In addition, high-angle dextral-oblique normal faults displace middle to late Quaternary alluvial fans near the range front. To image shallow (<1 km depth), crosscutting relationships between the low- and high-angle faults along the range front, we acquired two high-resolution P wave seismic reflection profiles. The northern, 4.6-km-long profile crosses the 2-km-wide Wildrose graben and the southern, 0.8-km-long profile extends onto the Panamint Valley playa, ~7.5 km S of Ballarat, CA. The profile across the Wildrose graben reveals a robust, low-angle reflector interpreted to represent the LANF separating Plio-Pleistocene alluvial fanglomerate and Proterozoic metasedimentary deposits. High-angle faults interpreted in the seismic profile correspond to fault scarps on Quaternary alluvial fan surfaces. Interpretation of the reflection data suggests that the high-angle faults vertically displace the LANF up to 80 m within the Wildrose graben. Similarly, the profile south of Ballarat reveals a low-angle reflector, which appears both rotated and displaced up to 260 m by high-angle faults. These results suggest that near the Panamint range front, the high-angle faults are the dominant active structures. We conclude that at least at shallow (<1 km) depths, the LANF we imaged is not active today

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43638/1/11186_2004_Article_BF00179274.pd

    Effect of Dam Emplacement and Water Level Changes on Sublacustrine Geomorphology and Recent Sedimentation in Jackson Lake, Grand Teton National Park (Wyoming, United States)

    Get PDF
    Dam installation on a deep hydrologically open lake provides the experimental framework necessary to study the influence of outlet engineering and changing base levels on limnogeological processes. Here, high-resolution seismic reflection profiles, sediment cores, and historical water level elevation datasets were employed to assess the recent depositional history of Jackson Lake, a dammed glacial lake located adjacent to the Teton fault in western Wyoming (USA). Prograding clinoforms imaged in the shallow stratigraphy indicate a recent lake-wide episode of delta abandonment. Submerged ∼11–12 m below the lake surface, these Gilbert-type paleo-deltas represent extensive submerged coarse-grained deposits along the axial and lateral margins of Jackson Lake that resulted from shoreline transgression following dam construction in the early 20th century. Other paleo-lake margin environments, including delta plain, shoreline, and glacial (drumlins, moraines) landforms were likewise inundated following dam installation, and now form prominent features on the lake floor. In deepwater, a detailed chronology was established using 137Cs, 210Pb, and reservoir-corrected 14C for a sediment core that spans ∼1654–2019 Common Era (CE). Dam emplacement (1908–1916 CE) correlates with a nearly five-fold acceleration in accumulation rates and a depositional shift towards carbonaceous sediments. Interbedded organic-rich black diatomaceous oozes and tan silts track changes in reservoir water level elevation, which oscillated in response to regional climate and downstream water needs between 1908 and 2019 CE. Chemostratigraphic patterns of carbon, phosphorus, and sulfur are consistent with a change in nutrient status and productivity, controlled initially by transgression-driven flooding of supralittoral soils and vegetation, and subsequently with water level changes. A thin gravity flow deposit punctuates the deepwater strata and provides a benchmark for turbidite characterization driven by hydroclimate change. Because the Teton fault is a major seismic hazard, end-member characterization of turbidites is a critical first step for accurate discrimination of mass transport deposits controlled by earthquakes in more ancient Jackson Lake strata. Results from this study illustrate the influence of dam installation on sublacustrine geomorphology and sedimentation, which has implications for lake management and ecosystem services. Further, this study demonstrates that Jackson Lake contains an expanded, untapped sedimentary archive recording environmental changes in the American West

    Seismic-Hazard Maps and Time Histories for the Commonwealth of Kentucky

    Get PDF
    The ground-motion hazard maps and time histories for three earthquake scenarios, expected earthquakes, probable earthquakes, and maximum credible earthquakes on the free surface in hard rock (shear-wave velocity \u3e1,500 m/s), were derived using the deterministic seismic hazard analysis. The results are based on (1) historical observations, (2) instrumental records, and (3) current understanding of the earthquake source, recurrence, and ground-motion attenuation relationship in the central United States. It is well understood that there are uncertainties in the ground motion hazard maps because of the uncertainties inherent in parameters such as earthquake location, magnitude, and frequency used in the study. This study emphasizes the earthquakes that would have maximum impacts on humans and structures. The ground-motion parameters, including time histories, are intended for use in the recommended zone (not site-specific) where the structure is assumed to be situated at the top of a bedrock foundation. For sites underlain by soils, and in particular for sites underlain by poorly consolidated soils, it is recommended that site-specific investigations be conducted by qualified professionals in order to determine the possibilities of amplification, liquefaction, slope failure, and other considerations when subjected to the ground motions
    • …
    corecore