413 research outputs found

    Mantle deformation or processing artefact? (Reply)

    Get PDF

    Deformation of the lowermost mantle from seismic anisotropy

    Get PDF
    Understanding the lowermost part of the Earth’s mantle—known as D''—can help us investigate whole-mantle dynamics, core-mantle interactions and processes such as slab deformation in the deep Earth. D'' shows significant seismic anisotropy, the variation of seismic wave speed with direction. This is likely due to deformation- induced alignment of MgSiO3-post-perovskite (ppv), believed to be the main mineral phase present in the region; however if this is the case, then previous measurements of D'' anisotropy, which are generally made in one direction only, are insufficient to distinguish candidate mechanisms of slip in ppv because the mineral is orthorhombic. Here we measure anisotropy in D'' beneath North and Central America, where slab material impinges6 on the core-mantle boundary (CMB), using shallow as well as deep earthquakes to increase the azimuthal coverage in D!. We make >700 individual measurements of shear wave splitting in D'' in three regions from two different azimuths in each case, and we show that the previously-assumed case of vertical transverse isotropy (VTI, where wave speed shows no azimuthal variation) is not possible; more complicated mechanisms must be involved. We test the fit of different MgSiO3-ppv deformation mechanisms to our results and find that shear on (001) is most consistent with observations and expected shear above the CMB beneath subduction zones. With new models of mantle flow, or improved experimental evidence of which ppv slip systems dominate, this method will allow us to map deformation at the CMB and link processes in D'', such as plume initiation, to the rest of the mantle

    CAN-HK : An a priori crustal model for the Canadian Shield

    Get PDF
    ACKNOWLEDGMENTS The United Kingdom component of the Hudson Bay Lithospheric Experiment (HuBLE) was supported by the Natural Environment Research Council (NERC) Grant Number NE/F007337/1, with financial and logistical support from the Geological Survey of Canada (GSC), Canada-Nunavut Geoscience Office (CNGO), SEIS-UK (the seismic node of NERC), and the First Nations communities of Nunavut. J. Beauchesne and J. Kendall provided invaluable assistance in the field. I. D. B. was funded by the Leverhulme Trust and acknowledges support through Grant Number RPG-2013- 332. The authors thank three anonymous reviewers for their constructive comments.Peer reviewedPublisher PD

    Amylin in the periphery II: An updated mini-review

    Full text link
    Amylin is a polypeptide that is cosecreted with insulin from the beta cells of the pancreas. Therefore, in states of diabetes in which the beta-cell mass is largely depleted or dysfunctional, insulin and amylin secretion are also lost or dysregulated. While the soluble monomeric form of amylin acts as a hormone that alters physiological responses related to feeding and acts as a specific growth factor, there has been renewed interest in the less-soluble oligomeric and insoluble polymeric forms of human (also monkey and cat) amylin that may contribute to the establishment of a pathophysiological pathway to overt diabetes. With this discovery has grown the hope of minimizing, with appropriate therapy, these toxic forms to preserve the functional (c) not-cell mass. Human beta cells may also be more vulnerable to these forms and one risk factor, a higher fat diet, may promote toxic forms. The generation and utilities of transgenic rodent models, which express enhanced levels of human amylin, have been accompanied by strategies that may lead to the reduction of toxic forms and associated risk factors. The successful definition and faithful expression of the physiological receptors (and complexes) for amylin that may differ for each target organ is an important development in the field of amylin research generally. Besides the heuristic value for the understanding of the molecular biology of receptors, the opportunity to screen and identify nonpeptide analogues that bind the physiological receptors has important implications for biomedicine and clinical practice in relation to treatments for diabetic complications, bone diseases, and eating disorders. In particular, in their capacities to mimic the effects of amylin as a growth factor, amylin analogues may prove useful in the stimulation of beta-cell mass (in conjunction with other factors), reduce the activity of the osteoclast population, and stimulate the regeneration of proximal tubules following toxic insult (and thus avoid the development of renal insufficiency)

    Shear-wave attenuation anisotropy: a new constraint on mantle melt near the Main Ethiopia Rif

    Get PDF
    The behaviour of fluids in preferentially aligned fractures plays an important role in a range of dynamic processes within the Earth. In the near-surface, understanding systems of fluid-filled fractures is crucial for applications such as geothermal energy production, monitoring CO2 storage sites, and exploration for metalliferous sub-volcanic brines. Mantle melting is a key geodynamic process, exerting control over its composition and dynamic processes. Upper mantle melting weakens the lithosphere, facilitating rifting and other surface expressions of tectonic processes.Aligned fluid-filled fractures are an efficient mechanism for seismic velocity anisotropy, requiring very low volume fractions, but such rock physics models also predict significant shear-wave attenuation anisotropy. In comparison, the attenuation anisotropy expected for crystal preferred orietation mechanisms is negligible or would only operate outside of the seismic frequency band.Here we demonstrate a new method for measuring shear-wave attenuation anisotropy, apply it to synthetic examples, and make the first measurements of SKS attenuation anisotropy using data recorded at the station FURI, in Ethiopia. At FURI we measure attenuation anisotropy where the fast shear-wave has been more attenuated than the slow shear-wave. This can be explained by the presence of aligned fluids, most probably melts, in the upper mantle using a poroelastic squirt flow model. Modelling of this result suggests that a 1% melt fraction, hosted in aligned fractures dipping ca. 40° that strike perpendicular to the Main Ethiopian Rift, is required to explain the observed attenuation anisotropy. This agrees with previous SKS shear-wave splitting analysis which suggested a 1% melt fraction beneath FURI. The interpreted fracture strike and dip, however, disagrees with previous work in the region which interprets sub-vertical melt inclusions aligned parallel to the Main Ethiopian Rift which only produce attenuation anisotropy where the slow shear-wave is more attenuated. These results show that attenuation anisotropy could be a useful tool for detecting mantle melt, and may offer strong constraints on the extent and orientation of melt inclusions which cannot be achieved from seismic velocity anisotropy alone

    The Hudson Bay Lithospheric Experiment (HuBLE) : Insights into Precambrian Plate Tectonics and the Development of Mantle Keels

    Get PDF
    The UK component of HuBLE was supported by Natural Environment Research Council (NERC) grant NE/F007337/1, with financial and logistical support from the Geological Survey of Canada, Canada–Nunavut Geoscience Office, SEIS-UK (the seismic node of NERC), and First Nations communities of Nunavut. J. Beauchesne and J. Kendall provided invaluable assistance in the field. Discussions with M. St-Onge, T. Skulski, D. Corrigan and M. Sanborne-Barrie were helpful for interpretation of the data. D. Eaton and F. A. Darbyshire acknowledge the Natural Sciences and Engineering Research Council. Four stations on the Belcher Islands and northern Quebec were installed by the University of Western Ontario and funded through a grant to D. Eaton (UWO Academic Development Fund). I. Bastow is funded by the Leverhulme Trust. This is Natural Resources Canada Contribution 20130084 to its Geomapping for Energy and Minerals Program. This work has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 240473 ‘CoMITAC’.Peer reviewedPublisher PD

    Seismic anisotropy in deforming halite:Evidence from the Mahogany salt body

    Get PDF
    We present unambiguous evidence that the Mahogany salt body, located in the Northern part of the Gulf of Mexico, is seismically anisotropic. Evidence of anisotropy comes from shear wave splitting data obtained from a vertical seismic profile VSP. The data set consists of 48 vertically aligned receivers in a borehole drilled through the salt body. Splitting analysis is performed on shear wave phases that are converted from compressional waves at the top and bottom of the salt body. The phase converted at the top of the salt layer shows a clear signature of seismic anisotropy, while the phase at the base of the salt layer shows negligible splitting. We investigate the possibility of rock salt halite LPO as a cause of the observed anisotropy. A finite element geomechanical salt deformation model of the Mahogany salt body is developed, where deformation history is used as an input to the texture plasticity simulation program VPSC. Assuming a halite salt body, a full elasticity model is then calculated and used to create a synthetic VSP splitting data set. The comparison between the synthetic and real VSP data set shows that LPO of rock salt can explain the observed anisotropy remarkably well. This is the strongest evidence to date of seismic anisotropy in a deforming salt structure. Furthermore, for the first time, we are able to demonstrate clear evidence that deforming halite is the most likely cause of this anisotropy, combining data set analysis and synthetic full wave form modelling based on calculated rock salt elasticities. Neglecting anisotropy in seismic processing in salt settings could lead to potential imaging errors, for example the deformation models show an averaged delta parameter of δ=-0.06, which would lead in a zero offset reflection setting to a depth mismatch of 6.2 per cent. Our work also show how observations of salt anisotropy can be used to probe characteristics of salt deformation

    The Coupled Magmatic and Hydrothermal Systems of the Restless Aluto Caldera, Ethiopia

    Get PDF
    Seismicity can be used to better understand interactions between magma bodies, hydrothermal systems and their host rocks—key factors influencing volcanic unrest. Here, we use earthquake data to image, for the first time, the seismic velocity structure beneath Aluto, a deforming volcano in the Main Ethiopian Rift. Traveltime tomography is used to jointly relocate seismicity and image 3D P- and S-wave velocity structures and the ratio between them (VP/VS). At depths of 4–9 km, the seismicity maps the top of a large low velocity zone with high VP/VS, which we interpret as a more ductile and melt-bearing region. A shallow (<3 km) hydrothermal system exhibits low seismic velocities and very low VP/VS (∼1.40), consistent with the presence of gases exsolved from a deeper melt-rich mush body. The Artu Jawe fault and fracture system provides the migration pathway that connects the deeper mush body with the shallow hydrothermal system. Together, these observations demonstrate that the interaction between magmatic and hydrothermal systems, driven by the exchange of fluids, is responsible for the restless behavior of Aluto
    corecore