135 research outputs found

    Populations of high-value predators reflect the traits of their prey

    Get PDF
    The extent to which prey traits combine to influence the abundance of predators is still poorly understood, particularly for mixed predators in sympatry and in aquatic ecosystems. In this study, we characterise prey use and distribution in iconic bird (grey wagtails and Eurasian dippers) and fish species (brown trout and Atlantic salmon) to assess whether prey traits could predict populations of these four riverine predators. Specifically, we hypothesised that: 1) prey key traits would predict predator populations more effectively than 2) diversity of prey traits, 3) the taxonomic abundance or richness of prey (known as traditional or mass‐effect types of biodiversity) or 4) the prevailing environmental conditions. Combined predator population sizes were predicted better by a few key traits – specifically those revealing prey habitat use, size and drifting behaviour – than by prey diversity or prey trait diversity or environmental conditions. Our findings demonstrate that the complex relationships between prey assemblages and multiple predator species can be represented mechanistically when the key prey traits that govern encounter and consumption rates are identified. Given their apparent potential to reveal trophic relationships, and to complement more traditional measures of prey abundance, we advocate further development of trait‐based approaches in predator–prey research

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    The effects of climatic fluctuations and extreme events on running water ecosystems

    Get PDF
    Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world

    The Building of Galactic Disks: Insights from the Triangulum Spiral Galaxy Messier 33

    Get PDF
    The Triangulum Spiral Galaxy Messier 33 offers unique insights into the building of a galactic disk. We identify spectacular arcs of intermediate age (0.6 Gyr - 2 Gyr) stars in the low-metallicity outer disk. The northern arc spans approx. 120 degrees in azimuth and up to 5 arcmin in width. The arcs are located 2-3 disk scale lengths from the galaxy centre (where 1 disk scale length is equivalent to 0.1 degrees in the V-band) and lie precisely where there is a warp in the HI profile of M33. Warps and infall are inextricably linked (Binney, 1992). We present spectroscopy of candidate stars in the outer northern arc, secured using the Keck I telescope in Hawaii. The target stars have estimated visual magnitudes as faint as V ~ 25m. Absorption bands of CN are seen in all spectra reported in this review talk, confirming their carbon star status. Also presented are PAH emissivity radial profiles generated from IRAC observations of M33 using the Spitzer Space Telescope. A dramatic change of phase in the m=2 Fourier component is detected at the domain of the arcs. M33 serves as an excellent example how the disks of spiral galaxies in our Universe are built: as dynamically open systems, growing from the inward, outward.Comment: Invited review paper presented at IAU Simposium 235, Galaxy Evolution Across the Hubble Time, Prague. To be published by Cambridge University Press, eds. F. Combes & J. Palou

    Nicotine enhances an auditory Event-Related Potential component which is inversely related to habituation

    Get PDF
    Nicotine is a psychoactive substance that is commonly consumed in the context of music. However, the reason why music and nicotine are coconsumed is uncertain. One possibility is that nicotine affects cognitive processes relevant to aspects of music appreciation in a beneficial way. Here we investigated this possibility using Event-Related Potentials (ERPs). Participants underwent a simple decision-making task (to maintain attentional focus), responses to which were signaled by auditory stimuli. Unlike most previous research looking at the effects of nicotine on auditory processing, we used tones of different pitch, a fundamental element of music. In addition, unlike most other studies, we tested non-smoking subjects to avoid withdrawal-related complications. We found that nicotine (4.0 mg, administered as gum) increased P2 amplitude in the frontal region. Since a decrease in P2 amplitude and latency is related to habituation processes, and an enhanced ability to disengage from irrelevant stimuli, our findings suggest that nicotine may cause a reduction in habituation, resulting in non-smokers being less able to adapt to repeated stimuli. A corollary of that decrease in adaptation may be that nicotine extends the temporal window during which a listener is able and willing to engage with a piece of music

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    C-reactive protein levels in patients at cardiovascular risk: EURIKA study

    Get PDF
    Background: Elevated C-reactive protein (CRP) levels are associated with high cardiovascular risk, and might identify patients who could benefit from more carefully adapted risk factor management. We have assessed the prevalence of elevated CRP levels in patients with one or more traditional cardiovascular risk factors. Methods: Data were analysed from the European Study on Cardiovascular Risk Prevention and Management in Usual Daily Practice (EURIKA, ClinicalTrials.gov Identifier: NCT00882336), which included patients (aged ≥50 years) from 12 European countries with at least one traditional cardiovascular risk factor but no history of cardiovascular disease. Analysis was also carried out on the subset of patients without diabetes mellitus who were not receiving statin therapy. Results: In the overall population, CRP levels were positively correlated with body mass index and glycated haemoglobin levels, and were negatively correlated with high-density lipoprotein cholesterol levels. CRP levels were also higher in women, those at higher traditionally estimated cardiovascular risk and those with greater numbers of metabolic syndrome markers. Among patients without diabetes mellitus who were not receiving statin therapy, approximately 30% had CRP levels ≥3 mg/L, and approximately 50% had CRP levels ≥2 mg/L, including those at intermediate levels of traditionally estimated cardiovascular risk. Conclusions: CRP levels are elevated in a large proportion of patients with at least one cardiovascular risk factor, without diabetes mellitus who are not receiving statin therapy, suggesting a higher level of cardiovascular risk than predicted according to conventional risk estimation systems

    Litter Decomposition as an Indicator of Stream Ecosystem Functioning at Local-to-Continental Scales

    Get PDF
    RivFunction is a pan-European initiative that started in 2002 and was aimed at esta- blishing a novel functional-based approach to assessing the ecological status of rivers. Litter decomposition was chosen as the focal process because it plays a central role in stream ecosystems and is easy to study in the field. Impacts of two stressors that occur across the continent, nutrient pollution and modified riparian vegetation, were exam- ined at >200 paired sites in nine European ecoregions. In response to the former, decomposition was dramatically slowed at both extremes of a 1000-fold nutrient gra- dient, indicating nutrient limitation in unpolluted sites, highly variable responses across Europe in moderately impacted streams, and inhibition via associated toxic and addi- tional stressors in highly polluted streams. Riparian forest modification by clear cutting or replacement of natural vegetation by plantations (e.g. conifers, eucalyptus) or pasture produced similarly complex responses. Clear effects caused by specific riparian distur- bances were observed in regionally focused studies, but general trends across different types of riparian modifications were not apparent, in part possibly because of important indirect effects. Complementary field and laboratory experiments were undertaken to tease apart the mechanistic drivers of the continental scale field bioassays by addressing the influence of litter, fungal and detritivore diversity. These revealed generally weak and context-dependent effects on decomposition, suggesting high levels of redundancy (and hence potential insurance mechanisms that can mitigate a degree of species loss) within the food web. Reduced species richness consistently increased decomposition variability, if not the absolute rate. Further field studies were aimed at identifying impor- tant sources of this variability (e.g. litter quality, temporal variability) to help constrain ranges of predicted decomposition rates in different field situations. Thus, although many details still need to be resolved, litter decomposition holds considerable potential in some circumstances to capture impairment of stream ecosystem functioning. For instance, species traits associated with the body size and metabolic capacity of the con- sumers were often the main driver at local scales, and these were often translated into important determinants of otherwise apparently contingent effects at larger scales. Key insights gained from conducting continental scale studies included resolving the appar- ent paradox of inconsistent relationships between nutrients and decomposition rates, as the full complex multidimensional picture emerged from the large-scale dataset, of which only seemingly contradictory fragments had been seen previously

    Continental-Scale Effects of Nutrient Pollution on Stream Ecosystem Functioning

    Get PDF
    Excessive nutrient loading is a major threat to aquatic ecosystems worldwide that leads to profound changes in aquatic biodiversity and biogeochemical processes. Systematic quantitative assessment of functional ecosystem measures for river networks is, however, lacking, especially at continental scales. Here, we narrow this gap by means of a pan-European field experiment on a fundamental ecosystem process—leaf-litter breakdown—in 100 streams across a greater than 1000-fold nutrient gradient. Dramatically slowed breakdown at both extremes of the gradient indicated strong nutrient limitation in unaffected systems, potential for strong stimulation in moderately altered systems, and inhibition in highly polluted streams. This large-scale response pattern emphasizes the need to complement established structural approaches (such as water chemistry, hydrogeomorphology, and biological diversity metrics) with functional measures (such as litter-breakdown rate, whole-system metabolism, and nutrient spiraling) for assessing ecosystem health
    corecore