224 research outputs found
Sex differences in Huntington's disease from a neuroinflammation perspective
Huntington's disease (HD) is a debilitating neurodegenerative condition characterized by motor, cognitive and psychiatric abnormalities. Immune dysregulation, prominently featuring increased immune activity, plays a significant role in HD pathogenesis. In addition to the central nervous system (CNS), systemic innate immune activation and inflammation are observed in HD patients, exacerbating the effects of the Huntingtin (HTT) gene mutation. Recent attention to sex differences in HD symptom severity underscores the need to consider gender as a biological variable in neurodegenerative disease research. Understanding sex-specific immune responses holds promise for elucidating HD pathophysiology and informing targeted treatment strategies to mitigate cognitive and functional decline. This perspective will highlight the importance of investigating gender influence in HD, particularly focusing on sex-specific immune responses predisposing individuals to disease
Comparative efficacy of a secretory phospholipase A2 inhibitor with conventional anti-inflammatory agents in a rat model of antigen-induced arthritis
INTRODUCTION: Previously, secretory phospholipase A(2 )(sPLA(2)) inhibition has been used as an adjunct to conventional rheumatoid arthritis therapy in human clinical trials without significant improvement of arthritic pathology. In this study, we compared the efficacy of a potent and orally active group IIa secretory phospholipase A(2 )inhibitor (sPLA(2)I) to conventional anti-arthritic agents; infliximab, leflunomide and prednisolone, in a rat model of antigen-induced arthritis. METHODS: Initially, to establish efficacy and dose-response, rats were orally dosed with the sPLA(2)I (1 and 5 mg/kg) two days prior to arthritis induction, and then daily throughout the 14-day study period. In the second trial, rats were orally dosed with the sPLA(2)I (5 and 10 mg/kg/day) beginning two days after the induction of arthritis, at the peak of joint swelling. Separate groups of rats were also dosed with the tumour necrosis factor-alpha (TNF-α) inhibitor infliximab (single 3 mg/kg i.v. injection), leflunomide (10 mg/kg/day, oral) or prednisolone (1 mg/kg/day, oral) at this same time point and used as comparative treatments. RESULTS: In the pathology prevention trial, both 1 and 5 mg/kg dose groups of sPLA(2)I demonstrated a significant reduction in joint swelling and gait disturbances; however, only the higher 5 mg/kg dose resulted in significantly reduced histopathology scores. In the post-induction trial, rats dosed with sPLA(2)I showed a significant improvement in joint swelling and gait scoring, whereas none of the conventional therapeutics achieved a significant decrease in both of these two disease markers. Histopathological scoring at the end-point of the study demonstrated significantly reduced median scores in rats treated with 10 mg/kg sPLA(2)I and leflunomide. CONCLUSIONS: The results from this study suggest a pathogenic role for sPLA(2 )enzymes in this model of arthritis in rats, and the potential clinical utility of sPLA(2 )inhibition as a safer, and more effective, alternative to conventional anti-arthritic therapeutics
Pathophysiology, treatment, and animal and cellular models of human ischemic stroke
Stroke is the world's second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to intensify efforts to ameliorate suffering and death from this common health catastrophe. This review aims to summarize both the present experimental and clinical state-of-the art, and to guide future research directions
The complement receptor C5aR controls acute inflammation and astrogliosis following spinal cord injury
This study investigated the role of the complement activation fragment C5a in secondary pathology following contusive spinal cord injury (SCI). C5ar(-/-) mice, which lack the signaling receptor for C5a, displayed signs of improved locomotor recovery and reduced inflammation during the first week of SCI compared with wild-type mice. Intriguingly, the early signs of improved recovery in C5ar(-/-) mice deteriorated from day 14 onward, with absence of C5aR ultimately leading to poorer functional outcomes, larger lesion volumes, reduced myelin content, and more widespread inflammation at 35 d SCI. Pharmacological blockade of C5aR with a selective antagonist (C5aR-A) during the first 7 d after SCI improved recovery compared with vehicle-treated mice, and this phenotype was sustained up to 35 d after injury. Consistent with observations made in C5ar(-/-) mice, these improvements were, however, lost if C5aR-A administration was continued into the more chronic phase of SCI. Signaling through the C5a-C5aR axis thus appears injurious in the acute period but serves a protective and/or reparative role in the post-acute phase of SCI. Further experiments in bone marrow chimeric mice suggested that the dual and opposing roles of C5aR on SCI outcomes primarily relate to its expression on CNS-resident cells and not infiltrating leukocytes. Additional in vivo and in vitro studies provided direct evidence that C5aR signaling is required during the postacute phase for astrocyte hyperplasia, hypertrophy, and glial scar formation. Collectively, these findings highlight the complexity of the inflammatory response to SCI and emphasize the importance of optimizing the timing of therapeutic interventions
Thrombin Differentially Modulates the Acute Inflammatory Response to Escherichia coli and Staphylococcus aureus in Human Whole Blood
Thrombin plays a central role in thromboinflammatory responses, but its activity is blocked in the common ex vivo human whole blood models, making an ex vivo study of thrombin effects on thromboinflammatory responses unfeasible. In this study, we exploited the anticoagulant peptide Gly-Pro-Arg-Pro (GPRP) that blocks fibrin polymerization to study the effects of thrombin on acute inflammation in response to Escherichia coli and Staphylococcus aureus. Human blood was anticoagulated with either GPRP or the thrombin inhibitor lepirudin and incubated with either E. coli or S. aureus for up to 4 h at 37°C. In GPRP-anticoagulated blood, there were spontaneous elevations in thrombin levels and platelet activation, which further increased in the presence of bacteria. Complement activation and the expression of activation markers on monocytes and granulocytes increased to the same extent in both blood models in response to bacteria. Most cytokines were not elevated in response to thrombin alone, but thrombin presence substantially and heterogeneously modulated several cytokines that increased in response to bacterial incubations. Bacterial-induced releases of IL-8, MIP-1α, and MIP-1β were potentiated in the thrombin-active GPRP model, whereas the levels of IP-10, TNF, IL-6, and IL-1β were elevated in the thrombin-inactive lepirudin model. Complement C5-blockade, combined with CD14 inhibition, reduced the overall cytokine release significantly, both in thrombin-active and thrombin-inactive models. Our data support that thrombin itself marginally induces leukocyte-dependent cytokine release in this isolated human whole blood but is a significant modulator of bacteria-induced inflammation by a differential effect on cytokine patterns
The C5a anaphylatoxin receptor CD88 is expressed in presynaptic terminals of hippocampal mossy fibres
Background: In the periphery, C5a acts through the G-protein coupled receptor CD88 to enhance/maintain inflammatory responses. In the brain, CD88 can be expressed on astrocytes, microglia and neurons. Previous studies have shown that the hippocampal CA3 region displays CD88-immunolabelling, and CD88 mRNA is present within dentate gyrus granule cells. As granule cells send dense axonal projections (mossy fibres) to CA3 pyramidal neurons, CD88 expression could be expressed on mossy fibres. However, the cellular location of CD88 within the hippocampal CA3 region is unknown
Complement peptide receptors in GtoPdb v.2021.3
Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors [107]) are activated by the endogenous ~75 amino-acid anaphylatoxin polypeptides C3a and C5a, generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3aR, C5aR1 and C5aR2), causing cell recruitment and triggering cellular degranulation that contributes to local inflammation
Complement peptide receptors (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database
Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors [103]) are activated by the endogenous ~75 amino-acid anaphylatoxin polypeptides C3a and C5a, generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3aR and C5aR), causing cell activation and triggering cellular degranulation that contributes to the local inflammation
Complement peptide receptors in GtoPdb v.2023.1
Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors [113]) are activated by the endogenous ~75 amino-acid anaphylatoxin polypeptides C3a and C5a, generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3a receptor, C5a receptor 1 and C5a receptor 2), causing cell recruitment and triggering cellular degranulation that contributes to local inflammation
- …