71 research outputs found
Causes of severe visual impairment and blindness in students in schools for the blind in Northwest Ethiopia.
OBJECTIVES: To determine the causes of severe visual impairment and blindness (SVI/BL) among students in schools for the blind in Northwest Ethiopia and to identify preventable and treatable causes. METHOD: Students attending nine schools for the blind in Northwest Ethiopia were examined and causes assigned using the standard WHO record form for children with blindness and low vision in May and June 2015. RESULTS: 383 students were examined, 357 (93%) of whom were severely visually impaired or blind (<6/60 in their better eye). 253 (70.9%) were aged 16 years or above and 228 (63.9%) were males. 100 students aged <16 years were blind and four were SVI, total 104. The major anatomical site of visual loss among those 0-15 years was cornea/phthisis (47.1%), usually due to measles and vitamin A deficiency, followed by whole globe (22.1%), lens (9.6%) and uvea (8.7%). Among students aged 16 years and above, corneal/phthisis (76.3%) was the major anatomical cause, followed by lens (6.3%), whole globe (4.7%), uvea (3.6%) and optic nerve (3.2%). The leading underlying aetiology among students aged <16 years was childhood factors (39.4%) (13.5% measles, 10.6% vitamin A deficiency), followed by unknown aetiology (54.8%), perinatal (2.9%) and hereditary factors (2.9%). In the older group, childhood factors (72.3%) (25% measles, 15% vitamin A deficiency) were major causes, followed by unknown aetiology (24.1%), perinatal (2.4%) and hereditary factors (0.8%). Over 80% of the causes were avoidable with majority being potentially preventable (65%). CONCLUSION: Corneal blindness, mainly as the result of measles and vitamin A deficiency, is still a public health problem in Northwest Ethiopia, and this has not changed as observed in other low-income countries. More than three-fourth of causes of SVI/BL in students in schools for the blind are potentially avoidable, with measles/vitamin A deficiency and cataract being the leading causes
Outcome of paediatric cataract surgery in Northwest Ethiopia: a retrospective case series.
AIM: To assess visual acuity outcomes, and factors associated with the outcome, of paediatric cataract surgery at the Child Eye Health Tertiary Facility, Gondar, Northwest Ethiopia. METHODS: The medical records of children aged below 16 years who underwent cataract surgery between September 2010 and August 2014 were reviewed for preoperative, surgical and postoperative data. RESULTS: One hundred and seventy-six eyes of 142 children (mean age 7.9 years±4.2 SD, 66% male) who had cataract surgery were included. Twenty-five per cent (35/142) of children had bilateral cataract, 18 (13%) had unilateral non-traumatic cataracts and 89 (63%) had unilateral traumatic cataracts. An intraocular lens was implanted in 93% of eyes. Visual acuities at last follow-up: bilateral cases in the better eye: good (â„6/18 or fix and follow) in 21/34 eyes (62%), borderline (<6/18-6/60) in 4 eyes (12%) and poor (<6/60) in 9 eyes (26%). In unilateral non-traumatic cases: good in 6 eyes (33%), borderline in 3 eyes (17%) and poor in 9 eyes (50%). In unilateral traumatic cases: good in 36 eyes (40%), borderline in 20 eyes (23%) and poor in 33 eyes (37%). In bilateral cataract, worse outcomes were associated with preoperative nystagmus/strabismus. In traumatic cases, worse outcomes were associated with the preoperative trauma-related complications. CONCLUSIONS: Visual acuity improved significantly after surgery, with better outcomes in bilateral cases. Early detection and surgery by a trained surgeon with good follow-up and postoperative rehabilitation can lead to better visual outcomes
Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus.
Idiopathic congenital nystagmus is characterized by involuntary, periodic, predominantly horizontal oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 singleton cases of idiopathic congenital nystagmus (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina, suggesting a specific role in the control of eye movement and gaze stability
Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus
Idiopathic congenital nystagmus (ICN) is characterised by involuntary, periodic, predominantly horizontal, oscillations of both eyes. We identified 22 mutations in FRMD7 in 26 families with X-linked idiopathic congenital nystagmus. Screening of 42 ICN singleton cases (28 male, 14 females) yielded three mutations (7%). We found restricted expression of FRMD7 in human embryonic brain and developing neural retina suggesting a specific role in the control of eye movement and gaze stability
Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (nâ„3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
Single ion magnets based on lanthanoid polyoxomolybdate complexes
Polyoxometalate (POM) chemistry has recently offered excellent examples of single ion magnets (SIMs) and molecular spin qubits. Compared with conventional coordination compounds, POMs provide rigid and highly symmetric coordination sites. However, all POM-based SIMs reported to date exhibit a very limited range of possibilities for chemical processability. We present herein two new families of POM-based SIMs which are soluble in organic solvents: [Ln(ÎČ-Mo8O26)2]5â {LnIII = Tb, Dy, Ho, Er, Tm and Yb} and the functionalised POMs [Ln{Mo5O13(OMe)4NNC6H4-p-NO2}2]3â {LnIII = Tb, Dy, Ho, Er, Yb and Nd}. In addition, these two families represent the first SIMs based on polyoxomolybdates. A magneto-structural analysis of these families is presented, which is based on an effective crystal field model, and compared with the results reported in analogous lanthanoid SIMs based on polyoxotungstates.ERC-2014-CoG/ 647301CM1203CA15128MAT2014-56143-RCTQ2014-52758-PMDM-2015-0538Polyoxometalate (POM) chemistry has recently offered excellent examples of single ion magnets (SIMs) and molecular spin qubits. Compared with conventional coordination compounds, POMs provide rigid and highly symmetric coordination sites. However, all POM-based SIMs reported to date exhibit a very limited range of possibilities for chemical processability. We present herein two new families of POM-based SIMs which are soluble in organic solvents: [Ln(ÎČ-Mo8O26)2]5â {LnIII = Tb, Dy, Ho, Er, Tm and Yb} and the functionalised POMs [Ln{Mo5O13(OMe)4NNC6H4-p-NO2}2]3â {LnIII = Tb, Dy, Ho, Er, Yb and Nd}. In addition, these two families represent the first SIMs based on polyoxomolybdates. A magneto-structural analysis of these families is presented, which is based on an effective crystal field model, and compared with the results reported in analogous lanthanoid SIMs based on polyoxotungstates
THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors.
peer reviewedThe Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
- âŠ