93 research outputs found
Faint young Sun paradox remains
The Sun was fainter when the Earth was young, but the climate was generally
at least as warm as today; this is known as the `faint young Sun paradox'.
Rosing et al. [1] claim that the paradox can be resolved by making the early
Earth's clouds and surface less reflective. We show that, even with the
strongest plausible assumptions, reducing cloud and surface albedos falls short
by a factor of two of resolving the paradox. A temperate Archean climate cannot
be reconciled with the low level of CO2 suggested by Rosing et al. [1]; a
stronger greenhouse effect is needed.Comment: 3 pages, no figures. In press in Nature. v2 corrects typo in author
list in original submissio
Coral-reef-derived dimethyl sulfide and the climatic impact of the loss of coral reefs
Dimethyl sulfide (DMS) is a naturally occurring aerosol precursor gas which plays an important role in the global sulfur budget, aerosol formation and climate. While DMS is produced predominantly by phytoplankton, recent observational literature has suggested that corals and their symbionts produce a comparable amount of DMS, which is unaccounted for in models. It has further been hypothesised that the coral reef source of DMS may modulate regional climate. This hypothesis presents a particular concern given the current threat to coral reefs under anthropogenic climate change. In this paper, a global climate model with online chemistry and aerosol is used to explore the influence of coral-reef-derived DMS on atmospheric composition and climate. A simple representation of coral-reef-derived DMS is developed and added to a common DMS surface water climatology, resulting in an additional flux of 0.3 Tg yr−1 S, or 1.7 % of the global sulfur flux from DMS. By comparing the differences between both nudged and free-running ensemble simulations with and without coral-reef-derived DMS, the influence of coral-reef-derived DMS on regional climate is quantified. In the Maritime Continent–Australian region, where the highest density of coral reefs exists, a small decrease in nucleation- and Aitken-mode aerosol number concentration and mass is found when coral reef DMS emissions are removed from the system. However, these small responses are found to have no robust effect on regional climate via direct and indirect aerosol effects. This work emphasises the complexities of the aerosol–climate system, and the limitations of current modelling capabilities are highlighted, in particular surrounding convective responses to changes in aerosol. In conclusion, we find no robust evidence that coral-reef-derived DMS influences global and regional climate
The climatic importance of uncertainties in regional aerosol-cloud radiative forcings over recent decades
This is the final version of the article. Available from American Meteorological Society via the DOI in this record.Regional patterns of aerosol radiative forcing are important for understanding climate change on decadal time scales. Uncertainty in aerosol forcing is likely to vary regionally and seasonally because of the short aerosol lifetime and heterogeneous emissions. Here the sensitivity of regional aerosol cloud albedo effect (CAE) forcing to 31 aerosol process parameters and emission fluxes is quantified between 1978 and 2008. The effects of parametric uncertainties on calculations of the balance of incoming and outgoing radiation are found to be spatially and temporally dependent. Regional uncertainty contributions of opposite sign cancel in global-mean forcing calculations, masking the regional importance of some parameters. Parameters that contribute little to uncertainty in Earth's global energy balance during recent decades make significant contributions to regional forcing variance. Aerosol forcing sensitivities are quantified within 11 climatically important regions, where surface temperatures are thought to influence large-scale climate effects. Substantial simulated uncertainty in CAE forcing in the eastern Pacific leaves open the possibility that apparent shifts in the mean ENSO state may result from a forced aerosol signal on multidecadal time scales. A likely negative aerosol CAE forcing in the tropical North Atlantic calls into question the relationship between Northern Hemisphere aerosol emission reductions and CAE forcing of sea surface temperatures in the main Atlantic hurricane development region on decadal time scales. Simulated CAE forcing uncertainty is large in the North Pacific, suggesting that the role of the CAE in altering Pacific tropical storm frequency and intensity is also highly uncertain.Data can be made available upon request from the corresponding author. L. A. Regayre is funded by a Doctoral Training Grant from the Natural Environment Research Council (NERC) and a CASE studentship with the Met Office Hadley Centre. B. B. B. Booth was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). K. S. Carslaw acknowledges funding from the Royal Society Wolfson Award. We acknowledge funding from NERC under AEROS and GASSP Grants NE/G006172/1 and NE/J024252/1. This work made use of the facilities of N8 HPC provided and funded by the N8 consortium and EPSRC (EP/K000225/1). The Met Office Hadley Centre is coordinated by the University of Leeds and the University of Manchester. The authors thank three anonymous reviewers for their constructive comments on this article
The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing
Oxidation of sulfur dioxide (SO₂) in cloud water by reaction with ozone is an important sulfate aerosol formation mechanism and strongly dependent on the acidity of cloud water. Decadal reductions in Northern Hemisphere sulfur emissions have contributed to higher cloud water pH, thereby altering sulfate formation rates. Here we use a global composition-climate model to show that changes in cloud water pH over the 1970–2009 period strongly affects the aerosol particle size distribution, cloud condensation nuclei concentrations, and the magnitude of aerosol radiative forcing. The simulated all-sky aerosol radiative forcing (1970–2009) over the North Atlantic is +1.2 W m‾² if pH remains constant at 5.0, as in many climate models. However, the forcing increases to +5.2 W m‾² if pH is assumed to increase by 1.0 unit over this period. Global composition climate models need to account for variations in cloud water pH to improve the representation of sulfate aerosol formation and aerosol radiative effects
The Climatic Importance of Uncertainties in Regional Aerosol-Cloud Radiative Forcings over Recent Decades
Regional patterns of aerosol radiative forcing are important for understanding climate change on decadal time scales. Uncertainty in aerosol forcing is likely to vary regionally and seasonally because of the short aerosol lifetime and heterogeneous emissions. Here the sensitivity of regional aerosol cloud albedo effect (CAE) forcing to 31 aerosol process parameters and emission fluxes is quantified between 1978 and 2008. The effects of parametric uncertainties on calculations of the balance of incoming and outgoing radiation are found to be spatially and temporally dependent. Regional uncertainty contributions of opposite sign cancel in global-mean forcing calculations, masking the regional importance of some parameters. Parameters that contribute little to uncertainty in Earth’s global energy balance during recent decades make significant contributions to regional forcing variance. Aerosol forcing sensitivities are quantified within 11 climatically important regions, where surface temperatures are thought to influence large-scale climate effects. Substantial simulated uncertainty in CAE forcing in the eastern Pacific leaves open the possibility that apparent shifts in the mean ENSO state may result from a forced aerosol signal on multidecadal time scales. A likely negative aerosol CAE forcing in the tropical North Atlantic calls into question the relationship between Northern Hemisphere aerosol emission reductions and CAE forcing of sea surface temperatures in the main Atlantic hurricane development region on decadal time scales. Simulated CAE forcing uncertainty is large in the North Pacific, suggesting that the role of the CAE in altering Pacific tropical storm frequency and intensity is also highly uncertain
Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models
A warm bias in tropical tropopause temperature is found in the Met Office Unified Model (MetUM), in common with most models from phase 5 of CMIP (CMIP5). Key dynamical, microphysical, and radiative processes influencing the tropical tropopause temperature and lower-stratospheric water vapor concentrations in climate models are investigated using the MetUM. A series of sensitivity experiments are run to separate the effects of vertical advection, ice optical and microphysical properties, convection, cirrus clouds, and atmospheric composition on simulated tropopause temperature and lower-stratospheric water vapor concentrations in the tropics. The numerical accuracy of the vertical advection, determined in the MetUM by the choice of interpolation and conservation schemes used, is found to be particularly important. Microphysical and radiative processes are found to influence stratospheric water vapor both through modifying the tropical tropopause temperature and through modifying upper-tropospheric water vapor concentrations, allowing more water vapor to be advected into the stratosphere. The representation of any of the processes discussed can act to significantly reduce biases in tropical tropopause temperature and stratospheric water vapor in a physical way, thereby improving climate simulations
Entrepreneurial sons, patriarchy and the Colonels' experiment in Thessaly, rural Greece
Existing studies within the field of institutional entrepreneurship explore how entrepreneurs influence change in economic institutions. This paper turns the attention of scholarly inquiry on the antecedents of deinstitutionalization and more specifically, the influence of entrepreneurship in shaping social institutions such as patriarchy. The paper draws from the findings of ethnographic work in two Greek lowland village communities during the military Dictatorship (1967–1974). Paradoxically this era associated with the spread of mechanization, cheap credit, revaluation of labour and clear means-ends relations, signalled entrepreneurial sons’ individuated dissent and activism who were now able to question the Patriarch’s authority, recognize opportunities and act as unintentional agents of deinstitutionalization. A ‘different’ model of institutional change is presented here, where politics intersects with entrepreneurs, in changing social institutions. This model discusses the external drivers of institutional atrophy and how handling dissensus (and its varieties over historical time) is instrumental in enabling institutional entrepreneurship
Impact of the 2019/2020 Australian Megafires on Air Quality and Health
The Australian 2019/2020 bushfires were unprecedented in their extent and intensity, causing a catastrophic loss of habitat, human and animal life across eastern-Australia. We use a regional air quality model to assess the impact of the bushfires on particulate matter with a diameter less than 2.5 μm (PM2.5) concentrations and the associated health impact from short-term population exposure to bushfire PM2.5. The mean population Air Quality Index (AQI) exposure between September and February in the fires and no fires simulations indicates an additional ∼437,000 people were exposed to “Poor” or worse AQI levels due to the fires. The AQ impact was concentrated in the cities of Sydney, Newcastle-Maitland, Canberra-Queanbeyan and Melbourne. Between October and February 171 (95% CI: 66–291) deaths were brought forward due to short-term exposure to bushfire PM2.5. The health burden was largest in New South Wales (NSW) (109 (95% CI: 41–176) deaths brought forward), Queensland (15 (95% CI: 5–24)), and Victoria (35 (95% CI: 13–56)). This represents 38%, 13% and 30% of the total deaths brought forward by short-term exposure to all PM2.5. At a city-level 65 (95% CI: 24–105), 23 (95% CI: 9–38) and 9 (95% CI: 4–14) deaths were brought forward from short-term exposure to bushfire PM2.5, accounting for 36%, 20%, and 64% of the total deaths brought forward from all PM2.5. Thus, the bushfires caused substantial AQ and health impacts across eastern-Australia. Climate change is projected to increase bushfire risk, therefore future fire management policies should consider this
Theorems on existence and global dynamics for the Einstein equations
This article is a guide to theorems on existence and global dynamics of
solutions of the Einstein equations. It draws attention to open questions in
the field. The local-in-time Cauchy problem, which is relatively well
understood, is surveyed. Global results for solutions with various types of
symmetry are discussed. A selection of results from Newtonian theory and
special relativity that offer useful comparisons is presented. Treatments of
global results in the case of small data and results on constructing spacetimes
with prescribed singularity structure or late-time asymptotics are given. A
conjectural picture of the asymptotic behaviour of general cosmological
solutions of the Einstein equations is built up. Some miscellaneous topics
connected with the main theme are collected in a separate section.Comment: Submitted to Living Reviews in Relativity, major update of Living
Rev. Rel. 5 (2002)
- …