20 research outputs found

    Mechanical degradation of ion-intercalation materials

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 173-195).The ion-intercalation materials used in high-energy batteries such as lithium-ion undergo large composition changes-which correlate to high storage capacity-but which also induce structural changes and stresses that can cause performance metrics such as power, achievable storage capacity, and life to degrade. "Electrochemical shock"-the electrochemical cycling-induced fracture of materials-contributes to impedance growth and performance degradation in ion-intercalation batteries. Using a combination of micromechanical models and in operando acoustic emission experiments, the mechanisms of electrochemical shock are identified, classified, and modeled in targeted model systems with different composition and microstructure. Three distinct mechanisms of electrochemical shock in ion-intercalation mate- rials are identified: 1) concentration-gradient stresses which arise during fast cycling, 2) two- phase coherency stresses which arise during first-order phase-transformations, and 3) inter-granular compatibility stresses in anisotropic polycrystalline materials. While concentration- gradient stresses develop in proportion to the electrochemical cycling rate, two-phase coherency stresses and intergranular compatibility stresses develop independent of the electro- chemical cycling rate and persist to arbitrarily low rates. For each mechanism, a micromechanical model with a fracture mechanics failure criterion is developed. This fundamental understanding of electrochemical shock leads naturally to microstructure design criteria and materials selection criteria for ion-intercalation materials with improved life and energy storage efficiency. In a given material system, crystal symmetry and phase-behavior determine the active mechanisms. Layered materials, as exemplified by LiCoO₂, are dominated by intergranular compatibility stresses when prepared in polycrystalline form, and two-phase coherency when prepared as single crystal powders. Spinel materials such as LiMn₂O₄, and LiMn₁.₅Ni₀.₅O₄ undergo first-order cubic-to-cubic phase- transformations, and are subject to two-phase coherency stresses even during low-rate electrochemical cycling. This low-rate electrochemical shock is averted in iron-doped material, LiMn₁.₅Ni₀.₄₂Fe₀.₀₈O₄, which has continuous solid solubility and is therefore not subject to two-phase coherency stresses; this enables a wider range of particle sizes and duty cycles to be used without electrochemical shock. While lithium-storage materials are used as model systems, the physical phenomena are common to other ion-intercalation systems, including sodium-, magnesium-, and aluminum-storage compounds.by William Henry Woodford IV.Ph.D

    Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage

    Get PDF
    Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit cyclic volumetric expansion upon reversible ion transport. Such chemomechanical coupling is typically far from thermodynamic equilibrium, and thus is challenging to quantify experimentally and computationally. In situ measurements and atomistic simulations are under rapid development to explore how this coupling can be used to potentially improve both device performance and durability. Here, we review the commonalities of coupling between electrochemical and mechanical states in fuel cell and battery materials, illustrating with specific cases the progress in materials processing, in situ characterization, and computational modeling and simulation. We also highlight outstanding questions and opportunities in these applications – both to better understand the limiting mechanisms within the materials and to significantly advance the durability and predictability of device performance required for renewable energy conversion and storage.United States. Dept. of Energy (Basic Energy Sciences Division of Materials Sciences and Engineering, grant DE-SC0002633)United States. Dept. of Energy (Office of Science, Graduate Fellowship Program (DOE SCGF))United States. American Recovery and Reinvestment Act of 2009 (ORISE-ORAU, contract no. DE-AC05-06OR23100))United States. Dept. of Energy. Division of Materials Sciences and Engineering (MIT/DMSE Salapatas Fellowship)United States. Air Force Office of Scientific Research (Presidential Early Career Award in Science and Engineering (PECASE)

    “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis

    No full text
    Fracture of electrode particles due to diffusion-induced stress has been implicated as a possible mechanism for capacity fade and impedance growth in lithium-ion batteries. In brittle materials, including many lithium intercalation materials, knowledge of the stress profile is necessary but insufficient to predict fracture events. We derive a fracture mechanics failure criterion for individual electrode particles and demonstrate its utility with a model system, galvanostatic charging of Li[subscript x]Mn[subscript 2]O[subscript 4]. Fracture mechanics predicts a critical C-rate above which active particles fracture; this critical C-rate decreases with increasing particle size. We produce an electrochemical shock map, a graphical tool that shows regimes of failure depending on C-rate, particle size, and the material’s inherent fracture toughness K[subscript Ic] . Fracture dynamics are sensitive to the gradient of diffusion-induced stresses at the crack tip; as a consequence, small initial flaws grow unstably and are therefore potentially more damaging than larger initial flaws, which grow stably.United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0002633)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Changes in the Federal Reserve's Inflation Target: Causes and Consequences

    No full text
    This paper estimates a New Keynesian model to draw inferences about the behavior of the Federal Reserve's unobserved inflation target. The results indicate that the target rose from 1 1/4% in 1959 to over 8% in the mid to late 1970s before falling back below 2 1/2% in 2004. The results also provide some support for the hypothesis that over the entire post-war period, Federal Reserve policy has systematically translated short-run price pressures set off by supply-side shocks into more persistent movements in inflation itself, although considerable uncertainty remains about the true source of shifts in the inflation target. Copyright 2007 The Ohio State University.
    corecore