1,065 research outputs found

    Apparatus for scanning the surface of a cylindrical body

    Get PDF
    A laser scanning system for providing a two-dimensional display of a cylindrical surface, such as to display striae of a fired bullet is described. The cylinder is scanned along its axis by vibrating one mirror in the laser beam path, and is scanned in a direction normal to its axis by vibrating a second mirror in a direction normal to the first or by rotating the bullet. Scan control signals are adjusted in phase to produce a synchronized display of a video signal obtained from detection of scattered light from the surface thus scanned by a laser beam

    Digital decorrelator saves time and expense in acoustic testing of structures

    Get PDF
    Instantaneous signals from coherent random sound field are summed and time delayed to avoid introducing vectorial addition errors. Resultant statistically independent signals are applied to spectrometer. Displayed sound pressure level is proportional to square root of sum of squares of sound pressure levels taken over frequency range of interest

    Simulation of associative learning with the replaced elements model

    No full text
    Associative learning theories can be categorised according to whether they treat the representation of stimulus compounds in an elemental or configural manner. Since it is clear that a simple elemental approach to stimulus representation is inadequate there have been several attempts to produce more elaborate elemental models. One recent approach, the Replaced Elements Model (Wagner, 2003), reproduces many results that have until recently been uniquely predicted by Pearce’s Configural Theory (Pearce, 1994). Although it is possible to simulate the Replaced Elements Model using “standard” simulation programs the generation of the correct stimulus representation is complex. The current paper describes a method for simulation of the Replaced Elements Model and presents the results of two example simulations that show differential predictions of Replaced Elements and Pearce’s Configural Theor

    EFFECT OF FEEDING WET DISTILLERS GRAINS WITH SOLUBLES TO BEEF CATTLE ON AIR AND MANURE QUALITY

    Get PDF
    Air quality is becoming a pressing issue for beef feedlot producers. Feeding practices influence the excretion of starch, fiber, nitrogen (N), and sulfur (S) in manure, thereby affecting nutrient content and the production of ammonia (NH3) and odorous compounds. Wet distillers grains with solubles (WDGS) are a common and economical ingredient in feedlot diets. WDGS are high in protein, fiber, phosphorus (P), and S but low in starch. The objective of this study was to compare NH3 concentration in the air and nutrients and volatile organic compounds (VOC) concentration in manure between two dietary treatments fed to feedlot cattle. Five pens of feedlot cattle were fed diets containing 14% to 35% WDGS and five pens were fed a corn-based diet with no ethanol byproducts (Control). Each pen had twelve sampling locations (N = 120) where air and manure samples were collected from the feedlot surface. Air samples were analyzed for NH3 concentration. Manure samples were analyzed for dry matter, pH, volatile solids, VOC, and nutrient composition (N, P, and S). Concentrations of P and S in manure and NH3 in the air were higher in pens fed WDGS compared to pens fed the control diet. Concentrations of VOC were similar across both treatments

    Laser wakefield acceleration with mid-IR laser pulses

    Full text link
    We report on the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (\lambda= 3.9 \mu m, 100 fs, 0.25 TW), which enable near- and above-critical density interactions with moderate-density gas jets. Relativistic electron acceleration up to ~12 MeV occurs when the jet width exceeds the threshold scale length for relativistic self-focusing. We present scaling trends in the accelerated beam profiles, charge and spectra, which are supported by particle-in-cell simulations and time-resolved images of the interaction. For similarly scaled conditions, we observe significant increases in accelerated charge compared to previous experiments with near-infrared (\lambda=800 nm) pulses

    The critical role of logarithmic transformation in Nernstian equilibrium potential calculations

    Get PDF
    The membrane potential, arising from uneven distribution of ions across cell membranes containing selectively permeable ion channels, is of fundamental importance to cell signaling. The necessity of maintaining the membrane potential may be appreciated by expressing Ohm’s law as current = voltage/resistance and recognizing that no current flows when voltage = 0, i.e., transmembrane voltage gradients, created by uneven transmembrane ion concentrations, are an absolute requirement for the generation of currents that precipitate the action and synaptic potentials that consume >80% of the brain’s energy budget and underlie the electrical activity that defines brain function. The concept of the equilibrium potential is vital to understanding the origins of the membrane potential. The equilibrium potential defines a potential at which there is no net transmembrane ion flux, where the work created by the concentration gradient is balanced by the transmembrane voltage difference, and derives from a relationship describing the work done by the diffusion of ions down a concentration gradient. The Nernst equation predicts the equilibrium potential and, as such, is fundamental to understanding the interplay between transmembrane ion concentrations and equilibrium potentials. Logarithmic transformation of the ratio of internal and external ion concentrations lies at the heart of the Nernst equation, but most undergraduate neuroscience students have little understanding of the logarithmic function. To compound this, no current undergraduate neuroscience textbooks describe the effect of logarithmic transformation in appreciable detail, leaving the majority of students with little insight into how ion concentrations determine, or how ion perturbations alter, the membrane potential

    Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice

    Get PDF
    Abstract Background Adipose derived- and bone marrow-derived murine mesenchymal stem cells (mMSCs) may be used to study stem cell properties in an in vivo setting for the purposes of evaluating therapeutic strategies that may have clinical applications in the future. If these cells are to be used for transplantation, the question arises of how to track the administered cells. One solution to this problem is to transplant cells with an easily identifiable genetic marker such as enhanced green fluorescent protein (eGFP). This protein is fluorescent and therefore does not require a chemical substrate for identification and can be visualized in living cells. This study seeks to characterize and compare adipose derived- and bone marrow-derived stem cells from C57Bl/6 mice and eGFP transgenic C57Bl/6 mice. Results The expression of eGFP does not appear to affect the ability to differentiate along adipogenic or osteogenic lineages; however it appears that the tissue of origin can influence differentiation capabilities. The presence of eGFP had no effect on cell surface marker expression, and mMSCs derived from both bone marrow and adipose tissue had similar surface marker profiles. There were no significant differences between transgenic and non-transgenic mMSCs. Conclusion Murine adipose derived and bone marrow derived mesenchymal stem cells from non-transgenic and eGFP transgenic C57Bl/6 mice have very similar characterization profiles. The availability of mesenchymal stem cells stably expressing a genetic reporter has important applications for the advancement of stem cell research.</p

    A corpus-assisted study of the discourse marker well as an indicator of judges' institutional roles in court cases with litigants in person

    Get PDF
    In this paper, I concentrate on court cases with litigants in person (lay people who act on their own behalf in legal proceedings without a counsel or solicitor) and discuss the challenges of building a corpus of courtroom discourse where it is crucial to distinguish between speakers due to their distinct institutional roles. The corpus incorporates seven sub-corpora of verbatim transcripts from different court cases with litigants in person and comprises over eleven-million tokens. The focus of this paper is on the interplay between the legal and lay discourse types and how judges project their institutional roles through well-initiated turns directed at litigants in person and counsels. As a versatile discourse marker, well provides a good opportunity to explore how judges have to adapt their roles to ensure lay litigants in person receive the necessary support and that their lack of competence does not impede on the fairness of the proceedings. Given the breadth and importance of the topic of litigation in person, I discuss how the tools and approaches of corpus linguistics can be helpful in this multi-disciplinary area where multiple functions and uses of individual linguistic features need to be explored in depth
    • …
    corecore