41 research outputs found

    Analyzing the advantages of subcutaneous over transcutaneous electrical stimulation for activating brainwaves

    Get PDF
    Transcranial electrical stimulation (TES) is a widely accepted neuromodulation modality for treating brain disorders. However, its clinical efficacy is fundamentally limited due to the current shunting effect of the scalp and safety issues. A newer electrical stimulation technique called subcutaneous electrical stimulation (SES) promises to overcome the limitations of TES by applying currents directly at the site of the disorder through the skull. While SES seems promising, the electrophysiological effect of SES compared to TES is still unknown, thus limiting its broader application. Here we comprehensively analyze the SES and TES to demonstrate the effectiveness and advantages of SES. Beagles were bilaterally implanted with subdural strips for intracranial electroencephalography and electric field recording. For the intracerebral electric field prediction, we designed a 3D electromagnetic simulation framework and simulated TES and SES. In the beagle model, SES induces three to four-fold larger cerebral electric fields compared to TES, and significant changes in power ratio of brainwaves were observed only in SES. Our prediction framework suggests that the field penetration of SES would be several-fold larger than TES in human brains. These results demonstrate that the SES would significantly enhance the neuromodulatory effects compared to conventional TES and overcome the TES limitations.11Ysciescopu

    The Protective Effects of Melittin on Propionibacterium acnes–Induced Inflammatory Responses In Vitro and In Vivo

    Get PDF
    Melittin is the main component in the venom of the honey bee (Apis mellifera). It has multiple effects including antibacterial, antiviral, and anti-inflammatory activities in various cell types. However, the anti-inflammatory mechanisms of melittin have not been elucidated in Propionibactierium acnes (P. acnes)–induced keratinocyte or inflammatory skin disease animal models. In this study, we examined the effects of melittin on the production of inflammatory cytokines in heat-killed P. acnes–induced HaCaT cells. Heat-killed P. acnes–treated keratinocytes increased the expression of pro-inflammatory cytokines and Toll-like receptor 2. However, melittin treatment significantly suppressed the expression of these cytokines through regulation of the NF-ÎșB and MAPK signaling pathways. Subsequently, the living P. acnes (1 × 107 CFU) were intradermally injected into the ear of mice. Living P. acnes–injected ears showed cutaneous erythema, swelling, and granulomatous response at 24 hours after injection. However, melittin-treated ears showed markedly reduced swelling and granulomatous responses compared with ears injected with only living P. acnes. These results demonstrate the feasibility of applying melittin for the prevention of inflammatory skin diseases induced by P. acnes

    Recessive C10orf2 mutations in a family with infantile-onset spinocerebellar ataxia, sensorimotor polyneuropathy, and myopathy

    Get PDF
    Recessive mutations in chromosome 10 open reading frame 2 (C10orf2) are relevant in infantile-onset spinocerebellar ataxia (IOSCA). In this study, we investigated the causative mutation in a Korean family with combined phenotypes of IOSCA, sensorimotor polyneuropathy, and myopathy. We investigated recessive mutations in a Korean family with two individuals affected by IOSCA. Causative mutations were investigated using whole exome sequencing. Electrophysiological analyses and muscle and nerve biopsies were performed, along with magnetic resonance imaging (MRI) of the brain and lower extremities. Compound heterozygous mutations c.1460C>T and c.1485-1G>A in C10orf2 were identified as causative of IOSCA. Skeletal muscle showed mitochondrial DNA (mtDNA) deletions. Both patients showed a period of normal development until 12–15 months, followed by ataxia, athetosis, hearing loss, and intellectual disability. Electrophysiological findings indicated motor and sensory polyneuropathies. Muscle biopsy revealed variations in the size and shape of myofibers with scattered, small, and angulated degenerating myofibers containing abnormal mitochondria; these observations are consistent with myopathy and may be the result of mtDNA deletions. Sural nerve biopsy revealed an axonal neuropathy. High-signal-intensity lesions in the middle cerebellar peduncles were correlated with clinical severity, and MRI of the lower legs was compatible with the hypothesis of length-dependent axonal degeneration. We identified novel compound heterozygous mutations of the C10orf2 gene as the cause of IOSCA with sensorimotor polyneuropathy and myopathy. Signs of motor neuropathy and myopathy were discovered for the first time in IOSCA patients with C10orf2 mutations. These results suggest that the clinical spectrum of IOSCA caused by C10orf2 mutations may be more variable than previously reported. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10048-014-0405-1) contains supplementary material, which is available to authorized users

    Shortening the Vegetative Growth Stage of <i>Phalaenopsis</i> Queen Beer ‘Mantefon’ by Controlling Light with Calcium Ammonium Nitrate Levels under Enriched CO<sub>2</sub>

    No full text
    The vegetative growth, photosynthetic, and stomatal characteristics were investigated in Phalaenopsis Queen Beer ‘Mantefon’ to determine light’s influence with calcium ammonium nitrate (CAN) levels under 800 ÎŒmol·mol−1 CO2. Two lights (150 ± 20 and 300 ± 20 ÎŒmol·m−2·s−1) and CAN levels were employed for 40 weeks: calcium, ammonium, and nitrate levels by 0.90, 0.55, and 2.97 mmol·L−1 (CAN1), 8.63, 1.11, and 6.05 mmol·L−1 (CAN2), 12.80, 1.72, and 9.13 mmol·L−1 (CAN3), and 18.80, 2.27, and 12.20 mmol·L−1 (CAN4), respectively. The number of leaves increased in the plants grown at 300 ± 20 ÎŒmol·m−2·s−1 with CAN1 compared to control. Plants grown at 300 ± 20 ÎŒmol·m−2·s−1 with CAN4 had the lowest number of leaves among all plants. The time to the mature leaf span decreased in the plants grown at 300 ± 20 ÎŒmol·m−2·s−1 with CAN1. The net CO2 uptake was higher in the plants grown at 300 ± 20 ÎŒmol·m−2·s−1 than those grown at 150 ± 20 ÎŒmol·m−2·s−1 with CAN1–3 conditions. The water-use efficiency is higher in the plants grown with CAN1 than those with CAN2–4 at 300 ± 20 ÎŒmol·m−2·s−1. The maximum stomatal aperture was the largest in the plants grown at 300 ± 20 ÎŒmol·m−2·s−1 with CAN1–2 among all plants. Consequently, light levels of 300 ± 20 ÎŒmol·m−2·s−1 in Phalaenopsis Queen Beer ‘Mantefon’ must be accompanied by nutrient CAN1 to improve photosynthesis and stomatal activity and promote leaf growth under 800 ÎŒmol·mol−1 CO2 conditions

    Load Balancing Strategies for Symbolic Vision Computations

    No full text
    Most intermediate and high-level vision algorithms manipulate symbolic features. A key operation in these vision algorithms is to search symbolic features satisfying certain geometric constraints. Parallelizing this symbolic search needs a non-trivial algorithmic technique due to the unpredictable workload. In this paper, we propose load balancing strategies for parallelizing symbolic search operations on distributed memory machines. By using an initial workload estimate, we first partition the computations such that the workload is distributed evenly across the processors. In addition, we perform task migrations dynamically to adapt to the evolving workload. To demonstrate the usefulness of our load balancing strategies, experiments were conducted on an IBM SP2 and a Cray T3D. Our results show that our task migration strategy can balance the unpredictable workload with little overhead. Our code using C and MPI is portable onto other high performance computing platforms. 1 Introduction..
    corecore