11,506 research outputs found
Interplay of disorder and geometrical frustration in doped Gadolinium Gallium Garnet
The geometrically-frustrated, triangular antiferromagnet GGG exhibits a rich
mix of short-range order and isolated quantum states. We investigate the
effects of up to 1% Neodymium substitution for Gallium on the ac magnetic
response at temperatures below 1 K in both the linear and nonlinear regimes.
Substitutional disorder actually drives the system towards a more perfectly
frustrated state, apparently compensating for the effect of imperfect
Gadolinium/Gallium stoichiometry, while at the same time more closely
demarcating the boundaries of isolated, coherent clusters composed of hundreds
of spins. Optical measurements of the local Nd environment substantiate the
picture of an increased frustration index with doping.Comment: 5 pages, 5 figure
Chemical Abundance Study of One Red Giant Star in NGC 5694 : A Globular Cluster with Dwarf Spheroidals' Chemical Signature?
We report the abundance analysis of one red giant branch star in the
metal-poor outer halo globular cluster NGC 5694. We obtain [Fe/H] = -1.93,
based on the ionized lines, and our metallicity measurement is in good
agreement with previous estimates. We find that [Ca+Ti/2Fe] and [Cu/Fe] of NGC
5694 are about 0.3 -- 0.4 dex lower than other globular clusters with similar
metallicities, but similar to some LMC clusters and stars in some dwarf
spheroidal galaxies. Differences persist, however, in the abundances of neutron
capture elements. The unique chemical abundance pattern and the large
Galactocentric distance (30 kpc) and radial velocity (-138.6 +/- 1.0 km/sec)
indicate that NGC 5694 had an extragalactic origin.Comment: ApJL accepte
Liquid-like behaviour of gold nanowire bridges
A combination of Focused Ion Beam (FIB) and Reactive Ion Etch (RIE) was used to fabricate free standing gold nanowire bridges with radii of 30 nm and below. These were subjected to point loading to failure at their mid-points using an Atomic Force Microscope (AFM), providing strength and deformation data. The results demonstrate a dimensionally dependent transition from conventional solid metallic properties to liquid-like behaviour including the unexpected reformation of a fractured bridge. The work reveals mechanical and materials properties of nanowires which could have significant impact on nanofabrication processes and nanotechnology devices such as Nano Electro Mechanical Systems (NEMS)
Microstructure, Mechanical Property and Biocompatibility of Porous Ti-Nb-Zr Alloys Fabricated by Rapid Sintering using Space Holder
Space holder method can easily control Young’s modulus due to control the pore size, distribution and shape. In this study, porous Ti-Nb-Zr biomaterial which is not included poison elements was successfully fabricated by powder metallurgy using space holder of NH4HCO3 and foaming agent of TiH2. The consolidation of powder was conducted by spark plasma sintering process (SPS) at 850 °C under 30MPa conditions. The effect of space holder contents on pore size and distribution of Ti-Nb-Zr alloys was observed by optical microscope (OM) and scanning electron microscope (SEM). As a result of microstructure observation, a lot of pore was uniformly distributed in the sintered Ti-Nb-Zr alloys. Cell cultivation experiments were conducted using cell cultivation experimental. The porous Ti-Nb-Zr alloys were fabricated successfully with 30% pore ratio and 50-60GPa of Young’s modulus. Biocompatibility of porous Ti-Nb-Zr alloys is similar to Ti-6Al-4V alloy
Electronic transport in films of colloidal CdSe nanocrystals
We present results for electronic transport measurements on large
three-dimensional arrays of CdSe nanocrystals. In response to a step in the
applied voltage, we observe a power-law decay of the current over five orders
of magnitude in time. Furthermore, we observe no steady-state dark current for
fields up to 10^6 V/cm and times as long as 2x10^4 seconds. Although the
power-law form of the decay is quite general, there are quantitative variations
with temperature, applied field, sample history, and the material parameters of
the array. Despite evidence that the charge injected into the film during the
measurement causes the decay of current, we find field-scaling of the current
at all times. The observation of extremely long-lived current transients
suggests the importance of long-range Coulomb interactions between charges on
different nanocrystals.Comment: 11 pages, 10 figure
A review of High Performance Computing foundations for scientists
The increase of existing computational capabilities has made simulation
emerge as a third discipline of Science, lying midway between experimental and
purely theoretical branches [1, 2]. Simulation enables the evaluation of
quantities which otherwise would not be accessible, helps to improve
experiments and provides new insights on systems which are analysed [3-6].
Knowing the fundamentals of computation can be very useful for scientists, for
it can help them to improve the performance of their theoretical models and
simulations. This review includes some technical essentials that can be useful
to this end, and it is devised as a complement for researchers whose education
is focused on scientific issues and not on technological respects. In this
document we attempt to discuss the fundamentals of High Performance Computing
(HPC) [7] in a way which is easy to understand without much previous
background. We sketch the way standard computers and supercomputers work, as
well as discuss distributed computing and discuss essential aspects to take
into account when running scientific calculations in computers.Comment: 33 page
Spin Hall torque magnetometry of Dzyaloshinskii domain walls
Current-induced domain wall motion in the presence of the
Dzyaloshinskii-Moriya interaction (DMI) is experimentally and theoretically
investigated in heavy-metal/ferromagnet bilayers. The angular dependence of the
current-induced torque and the magnetization structure of Dzyaloshinskii domain
walls are described and quantified simultaneously in the presence of in-plane
fields. We show that the DMI strength depends strongly on the heavy metal,
varying by a factor of 20 between Ta and Pa, and that strong DMI leads to wall
distortions not seen in conventional materials. These findings provide
essential insights for understanding and exploiting chiral magnetism for
emerging spintronics applications
Spin relaxation in mesoscopic superconducting Al wires
We studied the diffusion and the relaxation of the polarized quasiparticle
spins in superconductors. To that end, quasiparticles of polarized spins were
injected through an interface of a mesoscopic superconducting Al wire in
proximity contact with an overlaid ferromagnetic Co wire in the single-domain
state. The superconductivity was observed to be suppressed near the
spin-injecting interface, as evidenced by the occurrence of a finite voltage
for a bias current below the onset of the superconducting transition. The spin
diffusion length, estimated from finite voltages over a certain length of Al
wire near the interface, was almost temperature independent in the temperature
range sufficiently below the superconducting transition but grew as the
transition temperature was approached. This temperature dependence suggests
that the relaxation of the spin polarization in the superconducting state is
governed by the condensation of quasiparticles to the paired state. The spin
relaxation in the superconducting state turned out to be more effective than in
the normal state.Comment: 9 pages, 8 figure
- …