32 research outputs found

    Identifying the Viral Genes Encoding Envelope Glycoproteins for Differentiation of Cyprinid herpesvirus 3 Isolates

    Get PDF
    Cyprinid herpes virus 3 (CyHV-3) diseases have been reported around the world and are associated with high mortalities of koi (Cyprinus carpio). Although little work has been conducted on the molecular analysis of this virus, glycoprotein genes identified in the present study seem to be valuable targets for genetic comparison of this virus. Three envelope glycoprotein genes (ORF25, 65 and 116) of the CyHV-3 isolates from the USA, Israel, Japan and Korea were compared, and interestingly, sequence insertions or deletions were observed in these target regions. In addition, polymorphisms were presented in microsatellite zones from two glycoprotein genes (ORF65 and 116). In phylogenetic tree analysis, the Korean isolate was remarkably distinguished from USA, Israel, Japan isolates. These findings may be suitable for many applications including isolates differentiation and phylogeny studies.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000030777/2SEQ:2PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000030777ADJUST_YN:NEMP_ID:A076079DEPT_CD:551CITE_RATE:1.5FILENAME:viruses-05-00568 인쇄본.pdfDEPT_NM:수의학과EMAIL:[email protected]_YN:NCONFIRM:

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Glucocorticoids cause mandibular bone fragility and suppress osteocyte perilacunar-canalicular remodeling

    No full text
    Osteocytes support dynamic, cell-intrinsic resorption and deposition of bone matrix through a process called perilacunar/canalicular remodeling (PLR). In long bones, PLR depends on MMP13 and is tightly regulated by PTH, sclerostin, TGFβ, and glucocorticoids. However, PLR is regulated differently in the cochlea, suggesting a mechanism that is anatomically distinct. Unlike long bones, the mandible derives from neural crest and exhibits unique susceptibility to medication and radiation induced osteonecrosis. Therefore, we sought to determine if PLR in the mandible is suppressed by glucocorticoids, as it is in long bone. Hemimandibles were collected from mice subcutaneously implanted with prednisolone or vehicle containing pellets for 7, 21, or 55 days (n = 8/group) for radiographic and histological analyses. Within 21 days, micro-computed tomography revealed a glucocorticoid-dependent reduction in bone volume/total volume and trabecular thickness and a significant decrease in bone mineral density after 55 days. Within 7 days, glucocorticoids strongly and persistently repressed osteocytic expression of the key PLR enzyme MMP13 in both trabecular and cortical bone of the mandible. Cathepsin K expression was significantly reduced only after 55 days of glucocorticoid treatment, at which point histological analysis revealed a glucocorticoid-dependent reduction in the lacunocanalicular surface area. In addition to reducing bone mass and suppressing PLR, glucocorticoids also reduced the stiffness of mandibular bone in flexural tests. Thus, osteocyte PLR in the neural crest-derived mandible is susceptible to glucocorticoids, just as it is in the mesodermally-derived femur, highlighting the need to further study PLR as a target of drugs, and radiation in mandibular osteonecrosis. Keywords: Osteocyte, Perilacunar/canalicular remodeling, Mandible, Glucocorticoid

    MRI of bladder cancer: local and nodal staging

    No full text
    Accurate staging of bladder cancer (BC) is critical, with local tumor staging directly influencing management decisions and affecting prognosis. However, clinical staging based on clinical examination, including cystoscopy and transurethral resection of bladder tumor (TURBT), often understages patients compared to final pathology at radical cystectomy and lymph node (LN) dissection, mainly due to underestimation of the depth of local invasion and the presence of LN metastasis. MRI has now become established as the modality of choice for the local staging of BC and can be additionally utilized for the assessment of regional LN involvement and tumor spread to the pelvic bones and upper urinary tract (UUT). The recent development of the Vesical Imaging-Reporting and Data System (VI-RADS) recommendations has led to further improvements in bladder MRI, enabling standardization of image acquisition and reporting. Multiparametric magnetic resonance imaging (mpMRI) incorporating morphological and functional imaging has been proven to further improve the accuracy of primary and recurrent tumor detection and local staging, and has shown promise in predicting tumor aggressiveness and monitoring response to therapy. These sequences can also be utilized to perform radiomics, which has shown encouraging initial results in predicting BC grade and local stage. In this article, the current state of evidence supporting MRI in local, regional, and distant staging in patients with BC is reviewed. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2

    MRI of Bladder Cancer: Local and Nodal Staging.

    No full text
    Accurate staging of bladder cancer (BC) is critical, with local tumor staging directly influencing management decisions and affecting prognosis. However, clinical staging based on clinical examination, including cystoscopy and transurethral resection of bladder tumor (TURBT), often understages patients compared to final pathology at radical cystectomy and lymph node (LN) dissection, mainly due to underestimation of the depth of local invasion and the presence of LN metastasis. MRI has now become established as the modality of choice for the local staging of BC and can be additionally utilized for the assessment of regional LN involvement and tumor spread to the pelvic bones and upper urinary tract (UUT). The recent development of the Vesical Imaging-Reporting and Data System (VI-RADS) recommendations has led to further improvements in bladder MRI, enabling standardization of image acquisition and reporting. Multiparametric magnetic resonance imaging (mpMRI) incorporating morphological and functional imaging has been proven to further improve the accuracy of primary and recurrent tumor detection and local staging, and has shown promise in predicting tumor aggressiveness and monitoring response to therapy. These sequences can also be utilized to perform radiomics, which has shown encouraging initial results in predicting BC grade and local stage. In this article, the current state of evidence supporting MRI in local, regional, and distant staging in patients with BC is reviewed. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:649-667

    Developing a Fully-glycosylated Full-length SARS-CoV-2 Spike Protein Model in a Viral Membrane

    No full text
    This technical studydescribes all-atom modeling and simulation of a fully-glycosylated full-length SARS-CoV-2 spike (S) proteinin a viral membrane. First, starting from PDB:6VSBand 6VXX, full-length S protein structures were modeled using template-based modeling, de-novo protein structure prediction, and loop modeling techniques in GALAXYmodeling suite. Then, using the recently-determined most occupied glycoforms, 22 N-glycans and 1 O-glycan of each monomer were modeled using Glycan Reader & Modeler in CHARMM-GUI. These fully-glycosylated full-length S protein model structures were assessed and further refined against the low-resolution data in their respective experimental maps using ISOLDE. We then used CHARMM-GUI Membrane Builder to place the S proteins in a viral membrane and performed all-atom molecular dynamics simulations. All structures are available in CHARMM-GUI COVID-19 Archive (http://www.charmm-gui.org/docs/archive/covid19), so researchers can use these models to carry out innovative and novel modeling and simulation research for the prevention and treatment of COVID-19
    corecore