15 research outputs found

    Binding of smoothelin-like 1 to tropomyosin and calmodulin is mutually exclusive and regulated by phosphorylation

    Get PDF
    BACKGROUND: The smoothelin-like 1 protein (SMTNL1) can associate with tropomyosin (Tpm) and calmodulin (CaM), two proteins essential to the smooth muscle contractile process. SMTNL1 is phosphorylated at Ser301 by protein kinase A during calcium desensitization in smooth muscle, yet the effect of SMTNL1 phosphorylation on Tpm- and CaM-binding has yet to be investigated. RESULTS: Using pull down studies with Tpm-Sepharose and CaM-Sepharose, we examined the interplay between Tpm binding, CaM binding, phosphorylation of SMTNL1 and calcium concentration. Phosphorylation greatly enhanced the ability of SMTNL1 to associate with Tpm in vitro; surface plasmon resonance yielded a 10-fold enhancement in K (D) value with phosphorylation. The effect on CaM binding is more complex and varies with the availability of calcium. CONCLUSIONS: Combining both CaM and Tpm with SMTNL1 shows that the binding to both is mutually exclusive. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12858-017-0080-6) contains supplementary material, which is available to authorized users

    Divergence of the Yeast Transcription Factor FZF1 Affects Sulfite Resistance

    Get PDF
    Changes in gene expression are commonly observed during evolution. However, the phenotypic consequences of expression divergence are frequently unknown and difficult to measure. Transcriptional regulators provide a mechanism by which phenotypic divergence can occur through multiple, coordinated changes in gene expression during development or in response to environmental changes. Yet, some changes in transcriptional regulators may be constrained by their pleiotropic effects on gene expression. Here, we use a genome-wide screen for promoters that are likely to have diverged in function and identify a yeast transcription factor, FZF1, that has evolved substantial differences in its ability to confer resistance to sulfites. Chimeric alleles from four Saccharomyces species show that divergence in FZF1 activity is due to changes in both its coding and upstream noncoding sequence. Between the two closest species, noncoding changes affect the expression of FZF1, whereas coding changes affect the expression of SSU1, a sulfite efflux pump activated by FZF1. Both coding and noncoding changes also affect the expression of many other genes. Our results show how divergence in the coding and promoter region of a transcription factor alters the response to an environmental stress

    Three concurrent morphological presentations of eosinophilic granulomatosis with polyangiitis

    No full text
    10.1111/ijd.15466International Journal of Dermatology606759-76

    Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection

    No full text
    <div><p>Dengue virus (DV) infection is the most prevalent mosquito-borne viral disease and its manifestation has been shown to be contributed in part by the host immune responses. In this study, pathogen recognition receptors, Toll-like receptor (TLR) 2 and TLR6 were found to be up-regulated in DV-infected human PBMC using immunofluorescence staining, flow cytometry and Western blot analyses. Using ELISA, IL-6 and TNF-α, cytokines downstream of TLR2 and TLR6 signaling pathways were also found to be up-regulated in DV-infected PBMC. IL-6 and TNF-α production by PBMC were reduced when TLR2 and TLR6 were blocked using TLR2 and TLR6 neutralizing antibodies during DV infection. These results suggested that signaling pathways of TLR2 and TLR6 were activated during DV infection and its activation contributed to IL-6 and TNF-α production. DV NS1 protein was found to significantly increase the production of IL-6 and TNF-α when added to PBMC. The amount of IL-6 and TNF-α stimulated by DV NS1 protein was reduced when TLR2 and TLR6 were blocked, suggesting that DV NS1 protein is the viral protein responsible for the activation of TLR2 and TLR6 during DV infection. Secreted alkaline phosphatase (SEAP) reporter assay was used to further confirm activation of TLR2 and TLR6 by DV NS1 protein. In addition, DV-infected and DV NS1 protein-treated TLR6<sup>-/-</sup> mice have higher survivability compared to DV-infected and DV NS1 protein-treated wild-type mice. Hence, activation of TLR6 via DV NS1 protein could potentially play an important role in the immunopathogenesis of DV infection.</p></div
    corecore