36,271 research outputs found
Pion Interferometry for Hydrodynamical Expanding Source with a Finite Baryon Density
We calculate the two-pion correlation function for an expanding hadron source
with a finite baryon density. The space-time evolution of the source is
described by relativistic hydrodynamics and the Hanbury-Brown-Twiss (HBT)
radius is extracted after effects of collective expansion and multiple
scattering on the HBT interferometry have been taken into account, using
quantum probability amplitudes in a path-integral formalism. We find that this
radius is substantially smaller than the HBT radius extracted from the
freeze-out configuration.Comment: 4 pages, 2 figure
INVISQUE: Intuitive information exploration through interactive visualization
In this paper we present INVISQUE, a novel system designed for interactive information exploration. Instead of a conventional list-style arrangement, in INVISQUE information is represented by a two-dimensional spatial canvas, with each dimension representing user-defined semantics. Search results are presented as index cards, ordered in both dimensions. Intuitive interactions are used to perform tasks such as keyword searching, results browsing, categorizing, and linking to online resources such as Google and Twitter. The interaction-based query style also naturally lends the system to different types of user input such as multi-touch gestures. As a result, INVISQUE gives users a much more intuitive and smooth experience of exploring large information spaces
Evaluating the peak-to-valley dose ratio of synchrotron microbeams using PRESAGE fluorescence
Synchrotron-generated microbeam radiotherapy holds great promise for future treatment, but the high dose gradients present conventional dosimetry with a challenge. Measuring the important peak-to-valley dose ratio (PVDR) of a microbeam-collimated synchrotron source requires both a dosimeter and an analysis method capable of exceptional spatial resolution. The PVDR is of great interest since it is the limiting factor for potential application of the microbeam radiation therapy technique clinically for its tissue-sparing properties (i.e. the valley dose should be below the tolerance of normal tissue). In this work a new method of measuring the dose response of PRESAGE dosimeters is introduced using the fluorescence from a 638 nm laser on a confocal laser-scanning microscope. This fluorescent microscopy method produces dosimetry data at a pixel size as low as 78 nm, giving a much better spatial resolution than optical computed tomography, which is normally used for scanning PRESAGE dosimeters. Using this technique the PVDR of the BL28B2 microbeam at the SPring-8 synchrotron in Japan is estimated to be approximately 52:1 at a depth of 2.5 mm. The PVDR was also estimated with EBT2 GAFchromic films as 30.5:1 at the surface in order to compare the PRESAGE fluorescent results with a more established dosimetry system. This estimation is in good agreement with previously measured ratios using other dosimeters and Monte Carlo simulations. This means that it is possible to use PRESAGE dosimeters with confocal microscopy for the determination of PVDR
Ion-acoustic solitary waves and shocks in a collisional dusty negative ion plasma
We study the effects of ion-dust collisions and ion kinematic viscosities on
the linear ion-acoustic instability as well as the nonlinear propagation of
small amplitude solitary waves and shocks (SWS) in a negative ion plasma with
immobile charged dusts. {The existence of two linear ion modes, namely the
`fast' and `slow' waves is shown, and their properties are analyzed in the
collisional negative ion plasma.} {Using the standard reductive perturbation
technique, we derive a modified Korteweg-de Vries-Burger (KdVB) equation which
describes the evolution of small amplitude SWS.} {The profiles of the latter
are numerically examined with parameters relevant for laboratory and space
plasmas where charged dusts may be positively or negatively charged.} It is
found that negative ion plasmas containing positively charged dusts support the
propagation of SWS with negative potential. However, the perturbations with
both positive and negative potentials may exist when dusts are negatively
charged. The results may be useful for the excitation of SWS in laboratory
negative ion plasmas as well as for observation in space plasmas where charged
dusts may be positively or negatively charged.Comment: 13 pages, 9 figures; To appear in Physical Review
Interferometry signatures for QCD first-order phase transition in heavy ion collisions at GSI-FAIR energies
Using the technique of quantum transport of the interfering pair we examine
the Hanbury-Brown-Twiss (HBT) interferometry signatures for the
particle-emitting sources of pions and kaons produced in the heavy ion
collisions at GSI-FAIR energies. The evolution of the sources is described by
relativistic hydrodynamics with the system equation of state of the first-order
phase transition from quark-gluon plasma (QGP) to hadronic matter. We use
quantum probability amplitudes in a path-integral formalism to calculate the
two-particle correlation functions, where the effects of particle decay and
multiple scattering are taken into consideration. We find that the HBT radii of
kaons are smaller than those of pions for the same initial conditions. Both the
HBT radii of pions and kaons increase with the system initial energy density.
The HBT lifetimes of the pion and kaon sources are sensitive to the initial
energy density. They are significantly prolonged when the initial energy
density is tuned to the phase boundary between the QGP and mixed phase. This
prolongations of the HBT lifetimes of pions and kaons may likely be observed in
the heavy ion collisions with an incident energy in the GSI-FAIR energy range.Comment: 16 pages, 4 figure
Cooling of a New Born Compact Star with QCD Phase Transition
We study the cooling behaviour of an isolated strange quark star, using an
equation of state derived from perturbative QCD up to second order in strong
coupling constant, and we compare it with that of a neutron star. After an
initial rapid cooling, a quark star may undergo the QCD phase transition to
become a neutron star. We propose several signatures for such a scenario: a
large amount of energy can be released due to latent heat, a long duration
-ray source, and a second neutrino burst after a supernova explosion.Comment: 12 pages, 11 figures, 4 tables. Deleted a section related to static
structure.Very minor updated the results without changing the
conclusions.This is the final submitted version after all the proof read
processe
- …