53,482 research outputs found
Reestimation of the production spectra of cosmic ray secondary positrons and electrons in the ISM
A detailed calculation of the production spectra of charged hadrons produced by interactions of cosmic rays in the interstellar medium is presented along with a thorough treatment of pion and muon decays. Newly parameterized inclusive cross sections of hadrons were used and exact kinematic limitations were taken into account. Single parametrized expressions for the production spectra of both secondary positrons and electrons in the energy range .1 to 100 GeV are presented. The results are compared with other authors' predictions. Equilibrium spectra using various models are also presented
Inference and Optimization of Real Edges on Sparse Graphs - A Statistical Physics Perspective
Inference and optimization of real-value edge variables in sparse graphs are
studied using the Bethe approximation and replica method of statistical
physics. Equilibrium states of general energy functions involving a large set
of real edge-variables that interact at the network nodes are obtained in
various cases. When applied to the representative problem of network resource
allocation, efficient distributed algorithms are also devised. Scaling
properties with respect to the network connectivity and the resource
availability are found, and links to probabilistic Bayesian approximation
methods are established. Different cost measures are considered and algorithmic
solutions in the various cases are devised and examined numerically. Simulation
results are in full agreement with the theory.Comment: 21 pages, 10 figures, major changes: Sections IV to VII updated,
Figs. 1 to 3 replace
Cold-air performance of a 15.41-cm-tip-diameter axial-flow power turbine with variable-area stator designed for a 75-kW automotive gas turbine engine
An experimental evaluation of the aerodynamic performance of the axial flow, variable area stator power turbine stage for the Department of Energy upgraded automotive gas turbine engine was conducted in cold air. The interstage transition duct, the variable area stator, the rotor, and the exit diffuser were included in the evaluation of the turbine stage. The measured total blading efficiency was 0.096 less than the design value of 0.85. Large radial gradients in flow conditions were found at the exit of the interstage duct that adversely affected power turbine performance. Although power turbine efficiency was less than design, the turbine operating line corresponding to the steady state road load power curve was within 0.02 of the maximum available stage efficiency at any given speed
Toxicological approach to setting spacecraft maximum allowable concentrations for carbon monoxide
The Spacecraft Maximum Allowable Concentrations (SMACs) are exposure limits for airborne chemicals used by NASA in spacecraft. The aim of these SMACs is to protect the spacecrew against adverse health effects and performance decrements that would interfere with mission objectives. Because of the 1 and 24 hr SMACs are set for contingencies, minor reversible toxic effects that do not affect mission objectives are acceptable. The 7, 30, or 180 day SMACs are aimed at nominal operations, so they are established at levels that would not cause noncarcinogenic toxic effects and more than one case of tumor per 1000 exposed individuals over the background. The process used to set the SMACs for carbon monoxide (CO) is described to illustrate the approach used by NASA. After the toxicological literature on CO was reviewed, the data were summarized and separated into acute, subchronic, and chronic toxicity data. CO's toxicity depends on the formation of carboxyhemoglobin (COHb) in the blood, reducing the blood's oxygen carrying capacity. The initial task was to estimate the COHb levels that would not produce toxic effects in the brain and heart
Secure Communications in Millimeter Wave Ad Hoc Networks
Wireless networks with directional antennas, like
millimeter wave (mmWave) networks, have enhanced security.
For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit power regime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective forenhancing the secrecy rate
Coherent transport in Nb/delta-doped-GaAs hybrid microstructures
Coherent transport in Nb/GaAs superconductor-semiconductor microstructures is
presented. The structures fabrication procedure is based on delta-doped layers
grown by molecular-beam-epitaxy near the GaAs surface, followed by an As cap
layer to protect the active semiconductor layers during ex situ transfer. The
superconductor is then sputter deposited in situ after thermal desorption of
the protective layer. Two types of structures in particular will be discussed,
i.e., a reference junction and the engineered one that contains an additional
insulating AlGaAs barrier inserted during the growth in the semiconductor. This
latter configuration may give rise to controlled interference effects and
realizes the model introduced by de Gennes and Saint-James in 1963. While both
structures show reflectionless tunneling-dominated transport, only the
engineered junction shows additionally a low-temperature single marked
resonance peaks superimposed to the characteristic Andreev-dominated subgap
conductance. The analysis of coherent magnetotransport in both microstructures
is successfully performed within the random matrix theory of Andreev transport
and ballistic effects are included by directly solving the Bogoliubov-de Gennes
equations. The impact of junction morphology on reflectionless tunneling and
the application of the employed fabrication technique to the realization of
complex semiconductor-superconductor systems are furthermore discussed.Comment: 9 pages, 8 figures, invited review paper, to be published in Mod.
Phys. Lett.
- …