25,925 research outputs found
Elliptic Flow from a Transversally Thermalized Fireball
The agreement of elliptic flow data at RHIC at central rapidity with the
hydrodynamic model has led to the conclusion of very rapid thermalization. This
conclusion is based on the intuitive argument that hydrodynamics, which assumes
instantaneous local thermalization, produces the largest possible elliptic flow
values and that the data seem to saturate this limit. We here investigate the
question whether incompletely thermalized viscous systems may actually produce
more elliptic flow than ideal hydrodynamics. Motivated by the extremely fast
primordial longitudinal expansion of the reaction zone, we investigate a toy
model which exhibits thermalization only in the transverse directions but
undergoes collisionless free-streaming expansion in the longitudinal direction.
For collisions at RHIC energies, elliptic flow results from the model are
compared with those from hydrodynamics. With the final particle yield and
\kt-distribution fixed, the transversally thermalized model is shown not to
be able to produce the measured amount of elliptic flow. This investigation
provides further support for very rapid local kinetic equilibration at RHIC. It
also yields interesting novel results for the elliptic flow of massless
particles such as direct photons.Comment: revtex4, 15 pages + 10 embedded EPS figure
The Hubble Constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae
Context. The precise determination of the present-day expansion rate of the
Universe, expressed through the Hubble constant , is one of the most
pressing challenges in modern cosmology. Assuming flat CDM,
inference at high redshift using cosmic-microwave-background data from Planck
disagrees at the 4.4 level with measurements based on the local
distance ladder made up of parallaxes, Cepheids and Type Ia supernovae (SNe
Ia), often referred to as "Hubble tension". Independent,
cosmological-model-insensitive ways to infer are of critical importance.
Aims. We apply an inverse-distance-ladder approach, combining strong-lensing
time-delay-distance measurements with SN Ia data. By themselves, SNe Ia are
merely good relative distance indicators, but by anchoring them to strong
gravitational lenses one can obtain an measurement that is relatively
insensitive to other cosmological parameters. Methods. A cosmological parameter
estimate is performed for different cosmological background models, both for
strong-lensing data alone and for the combined lensing + SNe Ia data sets.
Results. The cosmological-model dependence of strong-lensing measurements
is significantly mitigated through the inverse distance ladder. In combination
with SN Ia data, the inferred consistently lies around 73-74 km s
Mpc, regardless of the assumed cosmological background model. Our
results agree nicely with those from the local distance ladder, but there is a
>2 tension with Planck results, and a ~1.5 discrepancy with
results from an inverse distance ladder including Planck, Baryon Acoustic
Oscillations and SNe Ia. Future strong-lensing distance measurements will
reduce the uncertainties in from our inverse distance ladder.Comment: 5 pages, 3 figures, A&A letters accepted versio
Production of Electron Neutrinos at Nuclear Power Reactors and the Prospects for Neutrino Physics
High flux of electron neutrinos(\nue) is produced at nuclear power reactors
through the decays of nuclei activated by neutron capture. Realistic simulation
studies on the neutron transport and capture at the reactor core were
performed. The production of \chr51 and \fe55 give rise to mono-energetic
\nue's at Q-values of 753 keV and 231 keV and fluxes of
and \nue/fission, respectively. Using data from a
germanium detector at the Kuo-Sheng Power Plant, we derived direct limits on
the \nue magnetic moment and the radiative lifetime of \mu_{\nu} < 1.3
\times 10^{-8} ~ \mub and at 90%
confidence level (CL), respectively. Indirect bounds on were also inferred. The \nue-flux can be enhanced by loading
selected isotopes to the reactor core, and the potential applications and
achievable statistical accuracies were examined. These include accurate
cross-section measurements, studies of mixing angle and
monitoring of plutonium production.Comment: 5 pages, 3 figures, 7 table
The state of the art in integrating machine learning into visual analytics
Visual analytics systems combine machine learning or other analytic techniques with interactive data visualization to promote sensemaking and analytical reasoning. It is through such techniques that people can make sense of large, complex data. While progress has been made, the tactful combination of machine learning and data visualization is still under-explored. This state-of-the-art report presents a summary of the progress that has been made by highlighting and synthesizing select research advances. Further, it presents opportunities and challenges to enhance the synergy between machine learning and visual analytics for impactful future research directions
A Unique Seasonal Pattern in Phytoplankton Biomass in Low-Latitude Waters in the South China Sea
A distinctive seasonal pattern in phytoplankton biomass was observed at the South East Asian Time series Study (SEATS) station (18°N, 116°E) in the northern South China Sea (SCS). Surface chlorophyll-a, depth integrated chlorophyll-a and primary production were elevated to 0.3 mg/m3, ~35 mg/m2 and 300 mg-C/m2/d, respectively, in the winter but stayed low, at 0.1 mg/m3, ~15 mg/m2 and 110 mg-C/m2/d as commonly found in other low latitude waters, in the rest of the year. Concomitantly, soluble reactive phosphate and nitrate+nitrite in the mixed layer also became readily detectable in the winter. The elevation of phytoplankton biomass coincided approximately with the lowest sea surface temperature and the highest wind speed in the year. Only the combined effect of convective overturn by surface cooling and wind-induced mixing could have enhanced vertical mixing sufficiently to make the nutrients in the upper nutricline available for photosynthetic activities and accounted for the higher biomass in the winter
Singularity Structures in Coulomb-Type Potentials in Two Body Dirac Equations of Constraint Dynamics
Two Body Dirac Equations (TBDE) of Dirac's relativistic constraint dynamics
have been successfully applied to obtain a covariant nonperturbative
description of QED and QCD bound states. Coulomb-type potentials in these
applications lead naively in other approaches to singular relativistic
corrections at short distances that require the introduction of either
perturbative treatments or smoothing parameters. We examine the corresponding
singular structures in the effective potentials of the relativistic
Schroedinger equation obtained from the Pauli reduction of the TBDE. We find
that the relativistic Schroedinger equation lead in fact to well-behaved wave
function solutions when the full potential and couplings of the system are
taken into account. The most unusual case is the coupled triplet system with
S=1 and L={(J-1),(J+1)}. Without the inclusion of the tensor coupling, the
effective S-state potential would become attractively singular. We show how
including the tensor coupling is essential in order that the wave functions be
well-behaved at short distances. For example, the S-state wave function becomes
simply proportional to the D-state wave function and dips sharply to zero at
the origin, unlike the usual S-state wave functions. Furthermore, this behavior
is similar in both QED and QCD, independent of the asymptotic freedom behavior
of the assumed QCD vector potential. Light- and heavy-quark meson states can be
described well by using a simplified linear-plus-Coulomb-type QCD potential
apportioned appropriately between world scalar and vector potentials. We use
this potential to exhibit explicitly the origin of the large pi-rho splitting
and effective chiral symmetry breaking. The TBDE formalism developed here may
be used to study quarkonia in quark-gluon plasma environments.Comment: 23 pages, 4 figure
Phase preparation by atom counting of Bose-Einstein condensates in mixed states
We study the build up of quantum coherence between two Bose-Einstein
condensates which are initially in mixed states. We consider in detail the two
cases where each condensate is initially in a thermal or a Poisson distribution
of atom number. Although initially there is no relative phase between the
condensates, a sequence of spatial atom detections produces an interference
pattern with arbitrary but fixed relative phase. The visibility of this
interference pattern is close to one for the Poisson distribution of two
condensates with equal counting rates but it becomes a stochastic variable in
the thermal case, where the visibility will vary from run to run around an
average visibility of In both cases, the variance of the phase
distribution is inversely proportional to the number of atom detections in the
regime where this number is large compared to one but small compared with the
total number of atoms in the condensates.Comment: 9 pages, 6 PostScript figure, submitted to PR
Relativistic Modification of the Gamow Factor
In processes involving Coulomb-type initial- and final-state interactions,
the Gamow factor has been traditionally used to take into account these
additional interactions. The Gamow factor needs to be modified when the
magnitude of the effective coupling constant increases or when the velocity
increases. For the production of a pair of particles under their mutual
Coulomb-type interaction, we obtain the modification of the Gamow factor in
terms of the overlap of the Feynman amplitude with the relativistic wave
function of the two particles. As a first example, we study the modification of
the Gamow factor for the production of two bosons. The modification is
substantial when the coupling constant is large.Comment: 13 pages, in LaTe
Andreev scattering and Josephson current in a one-dimensional electron liquid
Andreev scattering and the Josephson current through a one-dimensional
interacting electron liquid sandwiched between two superconductors are
re-examined. We first present some apparently new results on the
non-interacting case by studying an exactly solvable tight-binding model rather
than the usual continuum model. We show that perfect Andreev scattering (i.e.
zero normal scattering) at the Fermi energy can only be achieved by fine-tuning
junction parameters. We also obtain exact results for the Josephson current,
which is generally a smooth function of the superconducting phase difference
except when the junction parameters are adjusted to give perfect Andreev
scattering, in which case it becomes a sawtooth function. We then observe that,
even when interactions are included, all low energy properties of a junction
(E<<\Delta, the superconducting gap) can be obtained by "integrating out" the
superconducting electrons to obtain an effective Hamiltonian describing the
metallic electrons only with a boundary pairing interaction. This boundary
model provides a suitable starting point for bosonization/renormalization
group/boundary conformal field theory analysis. We argue that total normal
reflection and total Andreev reflection correspond to two fixed points of the
boundary renormalization group. For repulsive bulk interactions the Andreev
fixed point is unstable and the normal one stable. However, the reverse is true
for attractive interactions. This implies that a generic junction Hamiltonian
(without fine-tuned junction parameters) will renormalize to the normal fixed
point for repulsive interactions but to the Andreev one for attractive
interactions. An exact mapping of our tight-binding model to the Hubbard model
with a transverse magnetic field is used to help understand this behavior.Comment: revtex, 17 pages, 5 postscript figure
- …