8 research outputs found
Programmable two-photon quantum interference in channels in opaque scattering media
We investigate two-photon quantum interference in an opaque scattering medium
that intrinsically supports transmission channels. By adaptive spatial
phase-modulation of the incident wavefronts, the photons are directed at
targeted speckle spots or output channels. From experimentally available
coupled channels, we select two channels and enhance their transmission, to
realize the equivalent of a fully programmable beam splitter. By
sending pairs of single photons from a parametric down-conversion source
through the opaque scattering medium, we observe two-photon quantum
interference. The programmed beam splitter need not fulfill energy conservation
over the two selected output channels and hence could be non-unitary.
Consequently, we have the freedom to tune the quantum interference from
bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque
scattering media as a platform for high-dimensional quantum interference that
is notably relevant for boson sampling and physical-key-based authentication
8x8 Reconfigurable quantum photonic processor based on silicon nitride waveguides
The development of large-scale optical quantum information processing
circuits ground on the stability and reconfigurability enabled by integrated
photonics. We demonstrate a reconfigurable 8x8 integrated linear optical
network based on silicon nitride waveguides for quantum information processing.
Our processor implements a novel optical architecture enabling any arbitrary
linear transformation and constitutes the largest programmable circuit reported
so far on this platform. We validate a variety of photonic quantum information
processing primitives, in the form of Hong-Ou-Mandel interference, bosonic
coalescence/anticoalescence and high-dimensional single-photon quantum gates.
We achieve fidelities that clearly demonstrate the promising future for
large-scale photonic quantum information processing using low-loss silicon
nitride.Comment: Added supplementary materials, extended introduction, new figures,
results unchange
Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults
Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults.
Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives
Quantum optics of lossy asymmetric beam splitters
We theoretically investigate quantum interference of two single photons at a
lossy asymmetric beam splitter, the most general passive 22 optical
circuit. The losses in the circuit result in a non-unitary scattering matrix
with a non-trivial set of constraints on the elements of the scattering matrix.
Our analysis using the noise operator formalism shows that the loss allows
tunability of quantum interference to an extent not possible with a lossless
beam splitter. Our theoretical studies support the experimental demonstrations
of programmable quantum interference in highly multimodal systems such as
opaque scattering media and multimode fibers