86 research outputs found

    H5N1 influenza vaccine quality is affected by hemagglutinin conformational stability

    Get PDF
    Since 1997, highly pathogenic H5N1 avian influenza viruses have circulated in wild and domestic birds and sporadically have infected humans. Conventional inactivated vaccines made from these viruses were shown to have decreased HA content and immunogenicity compared to seasonal preparations. We assumed that the high pH threshold (5.6-6.0) known for the HA conformational change (pH of fusion or activation) of avian highly pathogenic influenza viruses resulted in the low stability of native HA conformation and affected the vaccine quality. The 58Lys→Ile mutation introduced into the HA2 subunit of the HA of A/chicken/Kurgan/5/05 (H5N1) virus decreased the pH threshold of the HA activation. The mutant virus demonstrated increased HA stability toward acidic pH and elevated temperature, decreased binding efficiency to the monoclonal antibody IIF4 that recognizes the HA low pH form, and increased HA resistance to trypsin digestion. Virus with modified HA was less susceptible to freezing stress and showed an increased content of immunocompetent HA in inactivated vaccine preparation compared to the analogous virus with original HA. Therefore, we have shown a way to increase the quality of inactivated vaccines made from highly pathogenic avian influenza viruses.Since 1997, highly pathogenic H5N1 avian influenza viruses have circulated in wild and domestic birds and sporadically have infected humans. Conventional inactivated vaccines made from these viruses were shown to have decreased HA content and immunogenicity compared to seasonal preparations. We assumed that the high pH threshold (5.6-6.0) known for the HA conformational change (pH of fusion or activation) of avian highly pathogenic influenza viruses resulted in the low stability of native HA conformation and affected the vaccine quality. The 58Lys→Ile mutation introduced into the HA2 subunit of the HA of A/chicken/Kurgan/5/05 (H5N1) virus decreased the pH threshold of the HA activation. The mutant virus demonstrated increased HA stability toward acidic pH and elevated temperature, decreased binding efficiency to the monoclonal antibody IIF4 that recognizes the HA low pH form, and increased HA resistance to trypsin digestion. Virus with modified HA was less susceptible to freezing stress and showed an increased content of immunocompetent HA in inactivated vaccine preparation compared to the analogous virus with original HA. Therefore, we have shown a way to increase the quality of inactivated vaccines made from highly pathogenic avian influenza viruses

    Mcl-1 Antisense Therapy Chemosensitizes Human Melanoma in a SCID Mouse Xenotransplantation Model

    Get PDF
    It is well established that high expression of the antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL can significantly contribute to chemoresistance in a number of human malignancies. Much less is known about the role the more recently described Bcl-2 family member Mcl-1 might play in tumor biology and resistance to chemotherapy. Using an antisense strategy, we here address this issue in melanoma, a paradigm of a treatment-resistant malignancy. After in vitro proof of principle supporting an antisense mechanism of action with specific reduction of Mcl-1 protein as a consequence of nuclear uptake of the Mcl-1 antisense oligonucleotides employed, antisense and universal control oligonucleotides were administered systemically in combination with dacarbazine in a human melanoma SCID mouse xenotransplantation model. Dacarbazine, available now for more than three decades, still remains the most active single agent for treatment of advanced melanoma. Mcl-1 antisense oligonucleotides specifically reduced target protein expression as well as the apoptotic threshold of melanoma xenotransplants. Combined Mcl-1 antisense oligonucleotide plus dacarbazine treatment resulted in enhanced tumor cell apoptosis and led to a significantly reduced mean tumor weight (mean 0.16 g, 95% confidence interval 0.08–0.26) compared to the tumor weight in universal control oligonucleotide plus dacarbazine treated animals (mean 0.35 g, 95% confidence interval 0.2–0.44) or saline plus dacarbazine treated animals (mean 0.39 g, 95% confidence interval 0.25–0.53). We thus show that Mcl-1 is an important factor contributing to the chemoresistance of human melanoma in vivo. Antisense therapy against the Mcl-1 gene product, possibly in combination with antisense strategies targeting other antiapoptotic Bcl-2 family members, appears to be a rational and promising approach to help overcome treatment resistance of malignant melanoma

    EGF Receptor-Targeted Synthetic Double-Stranded RNA Eliminates Glioblastoma, Breast Cancer, and Adenocarcinoma Tumors in Mice

    Get PDF
    BACKGROUND: Glioblastoma multiforme (GBM) is the most lethal form of brain cancer. With the available treatments, survival does not exceed 12–14 mo from the time of diagnosis. We describe a novel strategy to selectively induce the death of glioblastoma cells and other cancer cells that over-express the EGF receptor. Using a non-viral delivery vector that homes to the EGF receptor, we target synthetic anti-proliferative dsRNA (polyinosine-cytosine [poly IC]), a strong activator of apoptosis, selectively to cancer cells. METHODS AND FINDINGS: Poly IC was delivered by means of a non-viral vector: 25kDa polyethylenimine-polyethyleneglycol-EGF (PEI(25)-PEG-EGF). EGFR-targeted poly IC induced rapid apoptosis in the target cells in vitro and in vivo. Expression of several cytokines and “bystander killing” of untransfected tumor cells was detected in vitro and in vivo. Intra-tumoral delivery of the EGFR-targeted poly IC induced the complete regression of pre-established intracranial tumors in nude mice, with no obvious adverse toxic effects on normal brain tissue. A year after treatment completion the treated mice remain cancer-free and healthy. Similarly, non-viral delivery of poly IC completely eliminated pre-established breast cancer and adenocarcinoma xenografts derived from EGFR over-expressing cancer cell lines, suggesting that the strategy is applicable to other EGFR-over-expressing tumors. CONCLUSION: The strategy described has yielded an effective treatment of EGFR over-expressing GBM in an animal model. If this strategy is translated successfully to the clinical setting, it may actually offer help to GBM patients. Moreover the elimination of two additional EGFR over-expressing cancers in vivo suggests that in principle this strategy can be applied to treat other tumors that over-express EGFR

    Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry

    Get PDF
    Aim of this study was the site-specific conjugation of an epidermal growth factor (EGF)-polyethylene glycol (PEG) chain by click chemistry onto a poly(amido amine) (PAMAM) dendron, as a key step toward defined multifunctional carriers for targeted gene delivery. For this purpose, at first propargyl amine cored PAMAM dendrons with ester ends were synthesized. The chain terminal ester groups were then modified by oligoamines with different secondary amino densities. The oligoamine-modified PAMAM dendrons were well biocompatible, as demonstrated in cytotoxicity assays. Among the different oligoamine-modified dendrons, PAMAM-pentaethylenehexamine (PEHA) dendron polyplexes displayed the best gene transfer ability. Conjugation of PAMAM-PEHA dendron with PEG spacer was conducted via click reaction, which was performed before amidation with PEHA. The resultant PEG-PAMAM-PEHA copolymer was then coupled with EGF ligand. pDNA transfections in HuH-7 hepatocellular carcinoma cells showed a 10-fold higher efficiency with the polyplexes containing conjugated EGF as compared to the ligand-free ones, demonstrating the concept of ligand targeting. Overall gene transfer efficiencies, however, were moderate, suggesting that additional measures for overcoming subsequent intracellular bottlenecks in delivery have to be taken

    Preclinical Evaluation of a Replication-Deficient Intranasal ΔNS1 H5N1 Influenza Vaccine

    Get PDF
    We developed a novel intranasal influenza vaccine approach that is based on the construction of replication-deficient vaccine viruses that lack the entire NS1 gene (ΔNS1 virus). We previously showed that these viruses undergo abortive replication in the respiratory tract of animals. The local release of type I interferons and other cytokines and chemokines in the upper respiratory tract may have a “self-adjuvant effect”, in turn increasing vaccine immunogenicity. As a result, ΔNS1 viruses elicit strong B- and T- cell mediated immune responses.), one dose of vaccine delivered intranasally was sufficient for the induction of antibodies against homologous A/Vietnam/1203/04 and heterologous A/Indonesia/5/05 H5N1 strains.Our findings show that intranasal immunization with the replication deficient H5N1 ΔNS1 vaccine candidate is sufficient to induce a protective immune response against H5N1 viruses. This approach might be attractive as an alternative to conventional influenza vaccines. Clinical evaluation of ΔNS1 pandemic and seasonal influenza vaccine candidates are currently in progress

    Single HA2 Mutation Increases the Infectivity and Immunogenicity of a Live Attenuated H5N1 Intranasal Influenza Vaccine Candidate Lacking NS1

    Get PDF
    Our finding suggests that an efficient intranasal vaccination with a live attenuated H5N1 virus may require a certain level of pH and temperature stability of HA in order to achieve an optimal virus uptake by the nasal epithelial cells and induce a sufficient immune response. The pH of the activation of the H5 HA protein may play a substantial role in the infectivity of HPAIVs for mammals

    Влияние конформационной стабильности гемагглютинина вируса гриппа на качество инактивированных вакцин H5N1

    Get PDF
    Since 1997, highly pathogenic H5N1 avian influenza viruses have circulated in wild and domestic birds and sporadically have infected humans. Conventional inactivated vaccines made from these viruses were shown to have decreased HA content and immunogenicity compared to seasonal preparations. We assumed that the high pH threshold (5.6-6.0) known for the HA conformational change (pH of fusion or activation) of avian highly pathogenic influenza viruses resulted in the low stability of native HA conformation and affected the vaccine quality. The 58Lys→Ile mutation introduced into the HA2 subunit of the HA of A/chicken/Kurgan/5/05 (H5N1) virus decreased the pH threshold of the HA activation. The mutant virus demonstrated increased HA stability toward acidic pH and elevated temperature, decreased binding efficiency to the monoclonal antibody IIF4 that recognizes the HA low pH form, and increased HA resistance to trypsin digestion. Virus with modified HA was less susceptible to freezing stress and showed an increased content of immunocompetent HA in inactivated vaccine preparation compared to the analogous virus with original HA. Therefore, we have shown a way to increase the quality of inactivated vaccines made from highly pathogenic avian influenza viruses.Начиная с 1997 года, в популяции диких и домашних птиц наблюдается постоянная циркуляция высокопатогенных вирусов гриппа подтипа H5N1. Периодически эти вирусы инфицируют людей, что создает угрозу возникновения новой пандемии. При производстве инактивированных вакцин из вирусов H5N1 замечено, что содержание главного компонента – антигена гемагглютинина (HA) – гораздо ниже, чем в аналогичных препаратах сезонных вирусов гриппа. Мы предположили, что урожайность НА определяется его стабильностью. Белки HA, входящие в состав вирионов высокопатогеннных вирусов гриппа птиц, отличаются от HA человеческих изолятов вируса гриппа высоким порогом рН-слияния, или рН-активации (5.6–6.0 vs 5.0–5.4), – значение pH, при котором НА изменяет конформацию, переходя в форму, необходимую для проникновения вируса в клетку. Нами получен мутантный вариант НА вируса A/chicken/Kurgan/5/05 (H5N1) с единственной заменой 58Lys→Ile, находящейся в HA2 субъединице белка. По сравнению с НА дикого типа у мутантного варианта порог рН-активации снижен, а стабильность увеличена как в кислой среде, так и при повышенной температуре. Кроме того, вирионы, содержащие мутантный НА, оказались более устойчивы к расщеплению трипсином и при их замораживании/размораживании нативная структура шипов HA сохранялась лучше, чем в родительском вирусе. Повышенная стабильность мутантного НА корреливала с увеличением его продукции как антигена в вакцинном препарате. Таким образом, высокое значение рН-активации НА высокопатогенных штаммов вируса гриппа H5N1 определяет низкую конформационную стабильность НА и, как следствие, низкую стабильность вирионов, что влияет на качество получаемых из них вакцинных препаратов

    Disruption of Yarrowia lipolytica TPS1 Gene Encoding Trehalose-6-P Synthase Does Not Affect Growth in Glucose but Impairs Growth at High Temperature

    Get PDF
    We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3′half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression
    corecore