38 research outputs found
Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees
Abstract
Background
Cross-species gene expression analyses using oligonucleotide microarrays designed to evaluate a single species can provide spurious results due to mismatches between the interrogated transcriptome and arrayed probes. Based on the most recent human and chimpanzee genome assemblies, we developed updated and accessible probe masking methods that allow human Affymetrix oligonucleotide microarrays to be used for robust genome-wide expression analyses in both species. In this process, only data from oligonucleotide probes predicted to have robust hybridization sensitivity and specificity for both transcriptomes are retained for analysis.
Results
To characterize the utility of this resource, we applied our mask protocols to existing expression data from brains, livers, hearts, testes, and kidneys derived from both species and determined the effects probe numbers have on expression scores of specific transcripts. In all five tissues, probe sets with decreasing numbers of probes showed non-linear trends towards increased variation in expression scores. The relationships between expression variation and probe number in brain data closely matched those observed in simulated expression data sets subjected to random probe masking. However, there is evidence that additional factors affect the observed relationships between gene expression scores and probe number in tissues such as liver and kidney. In parallel, we observed that decreasing the number of probes within probe sets lead to linear increases in both gained and lost inferences of differential cross-species expression in all five tissues, which will affect the interpretation of expression data subject to masking.
Conclusion
We introduce a readily implemented and updated resource for human and chimpanzee transcriptome analysis through a commonly used microarray platform. Based on empirical observations derived from the analysis of five distinct data sets, we provide novel guidelines for the interpretation of masked data that take the number of probes present in a given probe set into consideration. These guidelines are applicable to other customized applications that involve masking data from specific subsets of probes
GeneLink: a database to facilitate genetic studies of complex traits
BACKGROUND: In contrast to gene-mapping studies of simple Mendelian disorders, genetic analyses of complex traits are far more challenging, and high quality data management systems are often critical to the success of these projects. To minimize the difficulties inherent in complex trait studies, we have developed GeneLink, a Web-accessible, password-protected Sybase database. RESULTS: GeneLink is a powerful tool for complex trait mapping, enabling genotypic data to be easily merged with pedigree and extensive phenotypic data. Specifically designed to facilitate large-scale (multi-center) genetic linkage or association studies, GeneLink securely and efficiently handles large amounts of data and provides additional features to facilitate data analysis by existing software packages and quality control. These include the ability to download chromosome-specific data files containing marker data in map order in various formats appropriate for downstream analyses (e.g., GAS and LINKAGE). Furthermore, an unlimited number of phenotypes (either qualitative or quantitative) can be stored and analyzed. Finally, GeneLink generates several quality assurance reports, including genotyping success rates of specified DNA samples or success and heterozygosity rates for specified markers. CONCLUSIONS: GeneLink has already proven an invaluable tool for complex trait mapping studies and is discussed primarily in the context of our large, multi-center study of hereditary prostate cancer (HPC). GeneLink is freely available at
Identification of Neural Crest and Glial Enhancers at the Mouse Sox10 Locus through Transgenesis in Zebrafish
Sox10 is a dynamically regulated transcription factor gene that is essential for the development of neural crestβderived and oligodendroglial populations. Developmental genes often require multiple regulatory sequences that integrate discrete and overlapping functions to coordinate their expression. To identify Sox10 cis-regulatory elements, we integrated multiple model systems, including cell-based screens and transposon-mediated transgensis in zebrafish, to scrutinize mammalian conserved, noncoding genomic segments at the mouse Sox10 locus. We demonstrate that eight of 11 Sox10 genomic elements direct reporter gene expression in transgenic zebrafish similar to patterns observed in transgenic mice, despite an absence of observable sequence conservation between mice and zebrafish. Multiple segments direct expression in overlapping populations of neural crest derivatives and glial cells, ranging from pan-Sox10 and pan-neural crest regulatory control to the modulation of expression in subpopulations of Sox10-expressing cells, including developing melanocytes and Schwann cells. Several sequences demonstrate overlapping spatial control, yet direct expression in incompletely overlapping developmental intervals. We were able to partially explain neural crest expression patterns by the presence of head to head SoxE family binding sites within two of the elements. Moreover, we were able to use this transcription factor binding site signature to identify the corresponding zebrafish enhancers in the absence of overall sequence homology. We demonstrate the utility of zebrafish transgenesis as a high-fidelity surrogate in the dissection of mammalian gene regulation, especially those with dynamically controlled developmental expression
A Large-Scale Zebrafish Gene Knockout Resource for the Genome-Wide Study of Gene Function
With the completion of the zebrafish genome sequencing project, it becomes possible to analyze the function of zebrafish genes in a systematic way. The first step in such an analysis is to inactivate each protein-coding gene by targeted or random mutation. Here we describe a streamlined pipeline using proviral insertions coupled with high-throughput sequencing and mapping technologies to widely mutagenize genes in the zebrafish genome. We also report the first 6144 mutagenized and archived F1βs predicted to carry up to 3776 mutations in annotated genes. Using in vitro fertilization, we have rescued and characterized ~0.5% of the predicted mutations, showing mutation efficacy and a variety of phenotypes relevant to both developmental processes and human genetic diseases. Mutagenized fish lines are being made freely available to the public through the Zebrafish International Resource Center. These fish lines establish an important milestone for zebrafish genetics research and should greatly facilitate systematic functional studies of the vertebrate genome
Mutational analysis of the tyrosine kinome in serous and clear cell endometrial cancer uncovers rare somatic mutations in TNK2 and DDR1
Background: Endometrial cancer (EC) is the 8th leading cause of cancer death amongst American women. Most ECs are endometrioid, serous, or clear cell carcinomas, or an admixture of histologies. Serous and clear ECs are clinically aggressive tumors for which alternative therapeutic approaches are needed. The purpose of this study was to search for somatic mutations in the tyrosine kinome of serous and clear cell ECs, because mutated kinases can point to potential therapeutic targets. Methods: In a mutation discovery screen, we PCR amplified and Sanger sequenced the exons encoding the catalytic domains of 86 tyrosine kinases from 24 serous, 11 clear cell, and 5 mixed histology ECs. For somatically mutated genes, we next sequenced the remaining coding exons from the 40 discovery screen tumors and sequenced all coding exons from another 72 ECs (10 clear cell, 21 serous, 41 endometrioid). We assessed the copy number of mutated kinases in this cohort of 112 tumors using quantitative real time PCR, and we used immunoblotting to measure expression of these kinases in endometrial cancer cell lines. Results: Overall, we identified somatic mutations in TNK2 (tyrosine kinase non-receptor, 2) and DDR1 (discoidin domain receptor tyrosine kinase 1) in 5.3% (6 of 112) and 2.7% (3 of 112) of ECs. Copy number gains of TNK2 and DDR1 were identified in another 4.5% and 0.9% of 112 cases respectively. Immunoblotting confirmed TNK2 and DDR1 expression in endometrial cancer cell lines. Three of five missense mutations in TNK2 and one of two missense mutations in DDR1 are predicted to impact protein function by two or more in silico algorithms. The TNK2P761Rfs*72 frameshift mutation was recurrent in EC, and the DDR1R570Q missense mutation was recurrent across tumor types. Conclusions: This is the first study to systematically search for mutations in the tyrosine kinome in clear cell endometrial tumors. Our findings indicate that high-frequency somatic mutations in the catalytic domains of the tyrosine kinome are rare in clear cell ECs. We uncovered ten new mutations in TNK2 and DDR1 within serous and endometrioid ECs, thus providing novel insights into the mutation spectrum of each gene in EC
Predisposition to Cancer Caused by Genetic and Functional Defects of Mammalian Atad5
ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5+/m) mice that were haploinsuffficient for Atad5. Atad5+/m mice displayed high levels of genomic instability in vivo, and Atad5+/m mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5+/m mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5+/m mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis
ADAM 13: A Novel ADAM Expressed in Somitic Mesoderm and Neural Crest Cells duringXenopus laevisDevelopment
AbstractEmbryonic development involves a series of cell adhesive interactions that provide mechanical and instructive information required for morphogenesis. The ADAMs family of membrane-anchored proteins, containinga disintegrinandmetalloprotease domain, is well suited for participating in such developmental events. They encode not only a potential adhesive function, through an integrin-binding disintegrin domain, but also a potential antiadhesive function, through a zinc-dependent metalloprotease domain. In order to investigate the role of ADAMs in early development we cloned a cDNA encoding a novel member of the ADAM family from aXenopus laevisneurula stage library. We call this cDNA, and the 915-amino-acid protein it encodes, ADAM 13. X-ADAM 13 RNA is expressed during embryogenesis from the midblastula stage through tadpole stage 45. X-ADAM 13 is localized to somitic mesoderm and cranial neural crest cells during gastrulation, neurulation, and in tail bud stages. Sequence analyses of the X-ADAM 13 metalloprotease and disintegrin domains indicate that the protein is likely to be involved in both proteolytic and cell-adhesive functions. The X-ADAM 13 sequence is most closely related to that of mouse meltrin Ξ±, which is implicated in myoblast fusion. Our data suggest that X-ADAM 13 may be involved in neural crest cell adhesion and migration as well as myoblast differentiation