8,352 research outputs found
A model for the Balmer pseudocontinuum in spectra of type 1 AGNs
Here we present a new method for subtracting the Balmer pseudocontinuum in
the UV part of type 1 AGN spectra. We calculate the intensity of the Balmer
pseudocontinuum using the prominent Balmer lines in AGN spectra. We apply the
model on a sample of 293 type 1 AGNs from SDSS database, and found that our
model of Balmer pseudocontinuum + power law continuum very well fits the
majority of the AGN spectra from the sample, while in 15% of AGNs, the model
fits reasonable the UV continuum, but a discrepancy between the observed and
fitted spectra is noted. Some of the possible reasons for the discrepancy may
be a different value for the optical depth in these spectra than used in our
model or the influence of the intrinsic reddening.Comment: 16 pages, 5 figures, 2 tables, accepted for publication in the
Advances in Space Research (ASR
Strategies for producing biochars with minimum PAH contamination
With the aim to develop initial recommendations for production of biochars with minimal contamination with polycyclic aromatic hydrocarbons (PAHs), we analysed a systematic set of 46 biochars produced under highly controlled pyrolysis conditions. The effects of the highest treatment temperature (HTT), residence time, carrier gas flow and typical feedstocks (wheat / oilseed rape straw pellets (WSP), softwood pellets (SWP)) on 16 US EPA PAH concentration in biochar were investigated. Overall, the PAH concentrations ranged between 1.2 and 100 mg kg-1. On average, straw-derived biochar contained 5.8 times higher PAH concentrations than softwood-derived biochar. In a batch pyrolysis reactor, increasing carrier gas flow significantly decreased PAH concentrations in biochar; in case of straw, the concentrations dropped from 43.1 mg kg-1 in the absence of carrier gas to 3.5 mg kg-1 with a carrier gas flow of 0.67 L min-1; for woody biomass PAHs concentrations declined from 7.4 mg kg-1 to 1.5 mg kg-1 with the same change of carrier gas flow. In the temperature range of 350-650°C the HTT did not have any significant effect on PAH content in biochars, irrespective of feedstock type, however, in biochars produced at 750°C the PAH concentrations were significantly higher. After detailed investigation it was deduced that this intensification in PAH contamination at high temperatures was most likely down to the specifics of the unit design of the continuous pyrolysis reactor used. Overall, it was concluded that besides PAH formation, vaporisation is determining the PAH concentration in biochar. The fact that both of these mechanisms intensify with pyrolysis temperature (one increasing and the other one decreasing the PAH concentration in biochar) could explain why no consistent trend in PAH content in biochar with temperature has been found in the literature
Does Competition Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency
This paper explores the empirical effects of competition on technical efficiency in the context of electricity industry restructuring. Restructuring programs adopted by many U.S. states made utilities residual claimants to cost savings and increased their exposure to competitive markets. We estimate the impact of these changes on annual generating plant-level input demand for non-fuel operating expenses, the number of employees and fuel use. We find that municipally-owned plants, whose owners were for the most part unaffected by restructuring, experienced the smallest efficiency gains over the past decade. Investor-owned utility plants in states that restructured their wholesale electricity markets had the largest reductions in nonfuel operating expenses and employment, while investor-owned plants in nonrestructuring states fell between these extremes. The analysis also highlights the substantive importance of treating the simultaneity of input and output decisions, which we do through an instrumental variables approach.Efficiency, Production, Competition, Electricity restructuring, Electric Generation, Regulation
On the numerical analysis of triplet pair production cross-sections and the mean energy of produced particles for modelling electron-photon cascade in a soft photon field
The double and single differential cross-sections with respect to positron
and electron energies as well as the total cross-section of triplet production
in the laboratory frame are calculated numerically in order to develop a Monte
Carlo code for modelling electron-photon cascades in a soft photon field. To
avoid numerical integration irregularities of the integrands, which are
inherent to problems of this type, we have used suitable substitutions in
combination with a modern powerful program code Mathematica allowing one to
achieve reliable higher-precission results. The results obtained for the total
cross-section closely agree with others estimated analytically or by a
different numerical approach. The results for the double and single
differential cross-sections turn out to be somewhat different from some
reported recently. The mean energy of the produced particles, as a function of
the characteristic collisional parameter (the electron rest frame photon
energy), is calculated and approximated by an analytical expression that
revises other known approximations over a wide range of values of the argument.
The primary-electron energy loss rate due to triplet pair production is shown
to prevail over the inverse Compton scattering loss rate at several (2)
orders of magnitude higher interaction energy than that predicted formerly.Comment: 18 pages, 8 figures, 2 tables, LaTex2e, Iopart.cls, Iopart12.clo,
Iopams.st
Coagulation kinetics beyond mean field theory using an optimised Poisson representation
Binary particle coagulation can be modelled as the repeated random process of
the combination of two particles to form a third. The kinetics can be
represented by population rate equations based on a mean field assumption,
according to which the rate of aggregation is taken to be proportional to the
product of the mean populations of the two participants. This can be a poor
approximation when the mean populations are small. However, using the Poisson
representation it is possible to derive a set of rate equations that go beyond
mean field theory, describing pseudo-populations that are continuous, noisy and
complex, but where averaging over the noise and initial conditions gives the
mean of the physical population. Such an approach is explored for the simple
case of a size-independent rate of coagulation between particles. Analytical
results are compared with numerical computations and with results derived by
other means. In the numerical work we encounter instabilities that can be
eliminated using a suitable 'gauge' transformation of the problem [P. D.
Drummond, Eur. Phys. J. B38, 617 (2004)] which we show to be equivalent to the
application of the Cameron-Martin-Girsanov formula describing a shift in a
probability measure. The cost of such a procedure is to introduce additional
statistical noise into the numerical results, but we identify an optimised
gauge transformation where this difficulty is minimal for the main properties
of interest. For more complicated systems, such an approach is likely to be
computationally cheaper than Monte Carlo simulation
Two-dimensional cellular automata and the analysis of correlated time series
Correlated time series are time series that, by virtue of the underlying
process to which they refer, are expected to influence each other strongly. We
introduce a novel approach to handle such time series, one that models their
interaction as a two-dimensional cellular automaton and therefore allows them
to be treated as a single entity. We apply our approach to the problems of
filling gaps and predicting values in rainfall time series. Computational
results show that the new approach compares favorably to Kalman smoothing and
filtering
Boolean networks with reliable dynamics
We investigated the properties of Boolean networks that follow a given
reliable trajectory in state space. A reliable trajectory is defined as a
sequence of states which is independent of the order in which the nodes are
updated. We explored numerically the topology, the update functions, and the
state space structure of these networks, which we constructed using a minimum
number of links and the simplest update functions. We found that the clustering
coefficient is larger than in random networks, and that the probability
distribution of three-node motifs is similar to that found in gene regulation
networks. Among the update functions, only a subset of all possible functions
occur, and they can be classified according to their probability. More
homogeneous functions occur more often, leading to a dominance of canalyzing
functions. Finally, we studied the entire state space of the networks. We
observed that with increasing systems size, fixed points become more dominant,
moving the networks close to the frozen phase.Comment: 11 Pages, 15 figure
The intrinsic Baldwin effect in broad Balmer lines of six long-term monitored AGNs
We investigate the intrinsic Baldwin effect (Beff) of the broad H and
H emission lines for six Type 1 active galactic nuclei (AGNs) with
different broad line characteristics: two Seyfert 1 (NGC 4151 and NGC 5548),
two AGNs with double-peaked broad line profiles (3C 390.3 and Arp 102B), one
narrow line Seyfert 1 (Ark 564), and one high-luminosity quasar with highly red
asymmetric broad line profiles (E1821+643). We found that a significant
intrinsic Beff was present in all Type 1 AGNs in our sample. Moreover, we do
not see strong difference in intrinsic Beff slopes in different types of AGNs
which probably have different physical properties, such as inclination, broad
line region geometry, or accretion rate. Additionally, we found that the
intrinsic Beff was not connected with the global one, which, instead, could not
be detected in the broad H or H emission lines. In the case of
NGC 4151, the detected variation of the Beff slope could be due to the change
in the site of line formation in the BLR. Finally, the intrinsic Beff might be
caused by the additional optical continuum component that is not part of the
ionization continuum.Comment: 12 pages, 8 figures, Accepted for publication in A&
- …
