338 research outputs found

    Grain processes in massive star formation

    Get PDF
    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

    Physical conditions in photodissociation regions: Application to galactic nuclei

    Get PDF
    Infrared and sub-millimeter observations are used in a simple procedure to determine average physical properties of the neutral interstellar medium in Galactic photodissociation regions as well as in ensembles of clouds which exist in the nuclei of luminous infrared galaxies. The relevant observations include the Infrared Astronomy Satellite (IRAS) infrared continuum measurements, infrared spectroscopy of the fine-structure lines of SiII 35 microns, OI 63 microns, and CII 158 microns, and the 2.6 mm CO (J=1-0) rotational transition. The diagnostic capabilities of the OI 145 microns line is also addressed. Researchers attribute these emission lines as well as the continuum to the atomic/molecular photodissociation region on the surfaces of molecular clouds which are illuminated by strong ultraviolet fields. They use the theoretical photodissociation region models of Tielens and Hollenbach (1985, Ap. J., 291, 722) to construct simple diagrams which utilize line ratios and line to continuum ratios to determine the average gas density n, the average incident far-ultraviolet flux G sub o, and the temperature of the atomic gas T

    Herschel PACS and SPIRE spectroscopy of the Photodissociation Regions associated with S 106 and IRAS 23133+6050

    Get PDF
    Photodissociation regions (PDRs) contain a large fraction of all of the interstellar matter in galaxies. Classical examples include the boundaries between ionized regions and molecular clouds in regions of massive star formation, marking the point where all of the photons energetic enough to ionize hydrogen have been absorbed. In this paper we determine the physical properties of the PDRs associated with the star forming regions IRAS 23133+6050 and S 106 and present them in the context of other Galactic PDRs associated with massive star forming regions. We employ Herschel PACS and SPIRE spectroscopic observations to construct a full 55-650 {\mu}m spectrum of each object from which we measure the PDR cooling lines, other fine- structure lines, CO lines and the total far-infrared flux. These measurements are then compared to standard PDR models. Subsequently detailed numerical PDR models are compared to these predictions, yielding additional insights into the dominant thermal processes in the PDRs and their structures. We find that the PDRs of each object are very similar, and can be characterized by a two-phase PDR model with a very dense, highly UV irradiated phase (n ∼\sim 10^6 cm^(-3), G0_0 ∼\sim 10^5) interspersed within a lower density, weaker radiation field phase (n ∼\sim 10^4 cm^(-3), G0_0 ∼\sim 10^4). We employed two different numerical models to investigate the data, firstly we used RADEX models to fit the peak of the 12^{12}CO ladder, which in conjunction with the properties derived yielded a temperature of around 300 K. Subsequent numerical modeling with a full PDR model revealed that the dense phase has a filling factor of around 0.6 in both objects. The shape of the 12^{12}CO ladder was consistent with these components with heating dominated by grain photoelectric heating. An extra excitation component for the highest J lines (J > 20) is required for S 106.Comment: 20 pages, 10 figures, A&A Accepte

    Physical properties of a very diffuse HI structure at high Galactic latitude

    Get PDF
    The main goal of this analysis is to present a new method to estimate the physical properties of diffuse cloud of atomic hydrogen observed at high Galactic latitude. This method, based on a comparison of the observations with fractional Brownian motion simulations, uses the statistical properties of the integrated emission, centroid velocity and line width to constrain the physical properties of the 3D density and velocity fields, as well as the average temperature of HI. We applied this method to interpret 21 cm observations obtained with the Green Bank Telescope of a very diffuse HI cloud at high Galactic latitude located in Firback North 1. We first show that the observations cannot be reproduced solely by highly-turbulent CNM type gas and that there is a significant contribution of thermal broadening to the line width observed. To reproduce the profiles one needs to invoke two components with different average temperature and filling factor. We established that, in this very diffuse part of the ISM, 2/3 of the column density is made of WNM and 1/3 of thermally unstable gas (T ~2600 K). The WNM gas is mildly supersonic (~1) and the unstable phase is definitely sub-sonic (~0.3). The density contrast (i.e., the standard deviation relative to the mean of density distribution) of both components is close to 0.8. The filling factor of the WNM is 10 times higher that of the unstable gas, which has a density structure closer to what would be expected for CNM gas. This field contains a signature of CNM type gas at a very low level (N_H ~ 3 x 10^19) which could have been formed by a convergent flow of WNM gas.Comment: 13 pages, 12 figures, accepted for publication in A&

    C60_{60} in Photodissociation Regions

    Full text link
    Recent studies have confirmed the presence of buckminsterfullerene (C60_{60}) in different interstellar and circumstellar environments. However, several aspects regarding C60_{60} in space are not well understood yet, such as the formation and excitation processes, and the connection between C60_{60} and other carbonaceous compounds in the interstellar medium, in particular polycyclic aromatic hydrocarbons (PAHs). In this paper we study several photodissociation regions (PDRs) where C60_{60} and PAHs are detected and the local physical conditions are reasonably well constrained, to provide observational insights into these questions. C60_{60} is found to emit in PDRs where the dust is cool (Td=20−40T_d = 20-40 K) and even in PDRs with cool stars. These results exclude the possibility for C60_{60} to be locked in grains at thermal equilibrium in these environments. We observe that PAH and C60_{60} emission are spatially uncorrelated and that C60_{60} is present in PDRs where the physical conditions (in terms of radiation field and hydrogen density) allow for full dehydrogenation of PAHs, with the exception of Ced 201. We also find trends indicative of an increase in C60_{60} abundance within individual PDRs, but these trends are not universal. These results support models where the dehydrogenation of carbonaceous species is the first step towards C60_{60} formation. However, this is not the only parameter involved and C60_{60} formation is likely affected by shocks and PDR age

    Embedded Star Formation in the Eagle Nebula with Spitzer/GLIMPSE

    Full text link
    We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point source spectral energy distributions, select candidate young stellar objects (YSOs), and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive young stellar object (YSO) that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars''. We confirm the youth of NGC 6611 by a large fraction of infrared-excess sources, and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.Comment: 16p preprint - ApJ accepte
    • …
    corecore