338 research outputs found
Grain processes in massive star formation
Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment
Physical conditions in photodissociation regions: Application to galactic nuclei
Infrared and sub-millimeter observations are used in a simple procedure to determine average physical properties of the neutral interstellar medium in Galactic photodissociation regions as well as in ensembles of clouds which exist in the nuclei of luminous infrared galaxies. The relevant observations include the Infrared Astronomy Satellite (IRAS) infrared continuum measurements, infrared spectroscopy of the fine-structure lines of SiII 35 microns, OI 63 microns, and CII 158 microns, and the 2.6 mm CO (J=1-0) rotational transition. The diagnostic capabilities of the OI 145 microns line is also addressed. Researchers attribute these emission lines as well as the continuum to the atomic/molecular photodissociation region on the surfaces of molecular clouds which are illuminated by strong ultraviolet fields. They use the theoretical photodissociation region models of Tielens and Hollenbach (1985, Ap. J., 291, 722) to construct simple diagrams which utilize line ratios and line to continuum ratios to determine the average gas density n, the average incident far-ultraviolet flux G sub o, and the temperature of the atomic gas T
Herschel PACS and SPIRE spectroscopy of the Photodissociation Regions associated with S 106 and IRAS 23133+6050
Photodissociation regions (PDRs) contain a large fraction of all of the
interstellar matter in galaxies. Classical examples include the boundaries
between ionized regions and molecular clouds in regions of massive star
formation, marking the point where all of the photons energetic enough to
ionize hydrogen have been absorbed. In this paper we determine the physical
properties of the PDRs associated with the star forming regions IRAS 23133+6050
and S 106 and present them in the context of other Galactic PDRs associated
with massive star forming regions. We employ Herschel PACS and SPIRE
spectroscopic observations to construct a full 55-650 {\mu}m spectrum of each
object from which we measure the PDR cooling lines, other fine- structure
lines, CO lines and the total far-infrared flux. These measurements are then
compared to standard PDR models. Subsequently detailed numerical PDR models are
compared to these predictions, yielding additional insights into the dominant
thermal processes in the PDRs and their structures. We find that the PDRs of
each object are very similar, and can be characterized by a two-phase PDR model
with a very dense, highly UV irradiated phase (n 10^6 cm^(-3), G
10^5) interspersed within a lower density, weaker radiation field phase
(n 10^4 cm^(-3), G 10^4). We employed two different numerical
models to investigate the data, firstly we used RADEX models to fit the peak of
the CO ladder, which in conjunction with the properties derived yielded
a temperature of around 300 K. Subsequent numerical modeling with a full PDR
model revealed that the dense phase has a filling factor of around 0.6 in both
objects. The shape of the CO ladder was consistent with these components
with heating dominated by grain photoelectric heating. An extra excitation
component for the highest J lines (J > 20) is required for S 106.Comment: 20 pages, 10 figures, A&A Accepte
Recommended from our members
ISO Detection of CO<sup>+</sup> toward the protostar IRAS 16293-2422
In this letter we report the detection of eight high-N rotational transitions of CO+ towards a low mass protostar, IRAS 16293-2422. The source was observed with the Long Wavelength Spectrometer on board the Infrared Space Observatory. This is the first time that CO+ has been detected in a low luminosity source and the first time that high-N lines have been detected in any source. The detection of these lines was not predicted by models and consequently, their interpretation is a challenge. We discuss the possibility that the observed CO+ emission originates in the dense inner regions illuminated by the UV field created in the accretion shock (formed by infalling material), and conclude that this is an improbable explanation. We have also considered the possibility that a strong, dissociative J-shock at ~ 500 AU from the star is the origin of the CO+ emission. This model predicts CO+ column densities in rough agreement with the observations if the magnetic field is ~ 1 mG and the shock velocity is 100 km s-1
Physical properties of a very diffuse HI structure at high Galactic latitude
The main goal of this analysis is to present a new method to estimate the
physical properties of diffuse cloud of atomic hydrogen observed at high
Galactic latitude. This method, based on a comparison of the observations with
fractional Brownian motion simulations, uses the statistical properties of the
integrated emission, centroid velocity and line width to constrain the physical
properties of the 3D density and velocity fields, as well as the average
temperature of HI. We applied this method to interpret 21 cm observations
obtained with the Green Bank Telescope of a very diffuse HI cloud at high
Galactic latitude located in Firback North 1. We first show that the
observations cannot be reproduced solely by highly-turbulent CNM type gas and
that there is a significant contribution of thermal broadening to the line
width observed. To reproduce the profiles one needs to invoke two components
with different average temperature and filling factor. We established that, in
this very diffuse part of the ISM, 2/3 of the column density is made of WNM and
1/3 of thermally unstable gas (T ~2600 K). The WNM gas is mildly supersonic
(~1) and the unstable phase is definitely sub-sonic (~0.3). The density
contrast (i.e., the standard deviation relative to the mean of density
distribution) of both components is close to 0.8. The filling factor of the WNM
is 10 times higher that of the unstable gas, which has a density structure
closer to what would be expected for CNM gas. This field contains a signature
of CNM type gas at a very low level (N_H ~ 3 x 10^19) which could have been
formed by a convergent flow of WNM gas.Comment: 13 pages, 12 figures, accepted for publication in A&
Recommended from our members
Detection of CO<sup>+</sup> with ISO towards the protostar IRAS16293-242
We observed the low luminosity (and low mass) protostar IRAS16293-2422 with the Long Wavelength Spectrometer on board the Infrared Space Observatory. The observed line spectrum is very reach and shows transitions of several molecules and atoms. Here we report the detection of eight high-N rotational transitions of CO+. This is the first time that CO+ has been detected in a low luminosity source and the first time that high-N lines have been detected in any source. The detection of these lines was not predicted by models and consequently, their interpretation is a challenge. We discuss the possibility that the observed CO+ emission originates in the dense inner regions illuminated by the UV field created in the accretion shock (formed by infalling material), and conclude that this is an improbable explanation. We have also considered the possibility that a strong, dissociative J-shock at ~500 AU from the star is the origin of the CO+ emission. This model predicts CO+ column densities in rough agreement with the observations if the magnetic field is ~1 mG and the shock velocity is 100 km s-1
Recommended from our members
ISO-LWS observations of IRAS16293-2422
We obtained LWS grating spectra toward IRAS 16293-2422 and the surrounding region, which covers the entire extent of the molecular outflow. The LWS spectra show that the region is relatively uncontaminated by PhotoDissociationRegion (PDR)-like emission, showing only a weak diffuse CII emission. The on-source spectrum revealed the presence of the OI(63μm) line and several lines from CO, H2O and OH molecules. In this work we derive the macroscopic quantities associated with the UV-illuminated emitting gas which surrounds IRAS16293-2422 and compare it with previous studies. We show that the molecular lines originate in a hot (~1600 K), dense (~ 3·104cm-3) and extended (~ 8·1016cm) region, that we interprete as the shock of the wind impacting obliquely with the walls of the cavity created by the wind itself. The OI(63μm) line observed by the Kuiper Airborne Observatory (KAO: Ceccarelli et al. 1997a) at ~ 1.2·1017cm west from the central source is hence interpreted as the head of the shock where the wind strikes the ambient gas. Finally we speculate that the OI(63μm) line emission seen on-source originates in the collapsing envelope that surrounds the central object(s
C in Photodissociation Regions
Recent studies have confirmed the presence of buckminsterfullerene (C)
in different interstellar and circumstellar environments. However, several
aspects regarding C in space are not well understood yet, such as the
formation and excitation processes, and the connection between C and
other carbonaceous compounds in the interstellar medium, in particular
polycyclic aromatic hydrocarbons (PAHs). In this paper we study several
photodissociation regions (PDRs) where C and PAHs are detected and the
local physical conditions are reasonably well constrained, to provide
observational insights into these questions. C is found to emit in PDRs
where the dust is cool ( K) and even in PDRs with cool stars.
These results exclude the possibility for C to be locked in grains at
thermal equilibrium in these environments. We observe that PAH and C
emission are spatially uncorrelated and that C is present in PDRs where
the physical conditions (in terms of radiation field and hydrogen density)
allow for full dehydrogenation of PAHs, with the exception of Ced 201. We also
find trends indicative of an increase in C abundance within individual
PDRs, but these trends are not universal. These results support models where
the dehydrogenation of carbonaceous species is the first step towards C
formation. However, this is not the only parameter involved and C
formation is likely affected by shocks and PDR age
Embedded Star Formation in the Eagle Nebula with Spitzer/GLIMPSE
We present new Spitzer photometry of the Eagle Nebula (M16, containing the
optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We
use dust radiative transfer models, mid-infrared and near-infrared color-color
analysis, and mid-infrared spectral indices to analyze point source spectral
energy distributions, select candidate young stellar objects (YSOs), and
constrain their mass and evolutionary state. Comparison of the different
protostellar selection methods shows that mid-infrared methods are consistent,
but as has been known for some time, near-infrared-only analysis misses some
young objects. We reveal more than 400 protostellar candidates, including one
massive young stellar object (YSO) that has not been previously highlighted.
The YSO distribution supports a picture of distributed low-level star
formation, with no strong evidence of triggered star formation in the
``pillars''. We confirm the youth of NGC 6611 by a large fraction of
infrared-excess sources, and reveal a younger cluster of YSOs in the nearby
molecular cloud. Analysis of the YSO clustering properties shows a possible
imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging
thus allows us to analyze the protostellar population, to measure the dust
temperature and column density, and to relate these in a consistent picture of
star formation in M16.Comment: 16p preprint - ApJ accepte
- …