84 research outputs found

    Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya

    Get PDF
    BACKGROUND: The successful development of odour-baited trapping systems for mosquitoes depends on the identification of behaviourally active semiochemicals, besides the design and operating principles of such devices. A large variety of 'attractants' has been identified in laboratory investigations, yet few of these increase trap catches in the field. A contained system, intermediate between the laboratory and open field, is presented and previous reports that human foot odour induces behavioural responses of Anopheles gambiae confirmed. METHODS: The response of 3–5 day old female An. gambiae towards odour-baited counterflow geometry traps (MM-X model; American Biophysics Corp., RI) was studied in semi-field (screen house) conditions in western Kenya. Traps were baited with human foot odour (collected on socks), carbon dioxide (CO(2), 500 ml min(-1)), ammonia (NH(3)), 1-octen-3-ol, or various combinations thereof. Trap catches were log (x+1) transformed and subjected to Latin square analysis of variance procedures. RESULTS: Apart from 1-octen-3-ol, all odour baits caused significant (P < 0.05) increases in trap catches over non-baited traps. Foot odour remained behaviourally active for at least 8 days after collection on nylon or cotton sock fabric. A synergistic response (P < 0.001) was observed towards the combination of foot odour and CO(2), which increased catches of these odours alone by 3.8 and 2.7 times, respectively. CONCLUSION: These results are the first to report behavioural responses of an African malaria vector to human foot odour outside the laboratory, and further investigation of fractions and/or individual chemical components of this odour complex are called for. Semi-field systems offer the prospect of high-throughput screening of candidate kairomones, which may expedite the development of efficient trap-bait systems for this and other African mosquito species

    Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector Anopheles gambiae

    Get PDF
    BACKGROUND: Many studies have suggested that variability in the attractiveness of humans to host-seeking mosquitoes is caused by differences in the make-up of body emanations, and olfactory signals in particular. Most investigations have either been laboratory-based, utilising odour obtained from sections of the body, or have been done in the field with sampling methods that do not discriminate between visual, physical and chemical cues of the host. Accordingly, evidence for differential attractiveness based on body emanations remains sparse in spite of the far-reaching epidemiological implications of this phenomenon. METHODS: A new three-port olfactometer that accommodates complete human beings as sources of host-seeking stimuli was used to study behavioural responses of Anopheles gambiae Giles sensu stricto (hereafter An. gambiae) under semi-field conditions in western Kenya. Differential attractiveness of nine male Kenyans was assessed by simultaneously exposing the mosquitoes to (a mixture of) total body emanations of 3 people occupying separate tents. Controls (empty tents) were included and the effect of residual odours following tent occupation was also examined. RESULTS: Trap catches increased significantly (P < 0.001) when a tent was occupied. Based on 'competition' experiments, the nine persons were classified into least, medium and most attractive groups. There was no significant interaction between person and trap (P = 0.302) or person and test period (P = 0.223). Presence (P < 0.001) or absence (P = 0.949) of significant differences in the number of mosquitoes caught per trap when tents were simultaneously occupied by one person in each or left empty, respectively, demonstrated that residual odours following tent occupation did not affect behavioural responses of the mosquitoes. CONCLUSION: We provide evidence that in the vicinity of humans, when exposed to a blend of physical and olfactory signals from more than one host, An. gambiae can effectively and consistently express host-selection behaviour that results in non-random biting

    Evaluation of textile substrates for dispensing synthetic attractants for malaria mosquitoes

    Get PDF
    Background: The full-scale impact of odour-baited technology on the surveillance, sampling and control of vectors of infectious diseases is partly limited by the lack of methods for the efficient and sustainable dispensing of attractants. In this study we investigated whether locally-available and commonly used textiles are efficient substrates for the release of synthetic odorant blends attracting malaria mosquitoes. Methods: The relative efficacy of (a) polyester, (b) cotton, (c) cellulose + polyacrylate, and (d) nylon textiles as substrates for dispensing a synthetic odour blend (Ifakara blend 1(IB1)) that attracts malaria mosquitoes was evaluated in western Kenya. The study was conducted through completely randomized Latin square experimental designs under semi-field and field conditions. Results: Traps charged with IB1-impregnated polyester, cotton and cellulose + polyacrylate materials caught significantly more female Anopheles gambiae sensu stricto (semi-field conditions) and An. gambiae sensu lato (field conditions) mosquitoes than IB1-treated nylon (P = 0.001). The IB1-impregnated cellulose + polyacrylate material was the most attractive to female An. funestus mosquitoes compared to all other dispensing textile substrates (P < 0.001). The responses of female An. funestus mosquitoes to IB1-treated cotton and polyester were equal (P = 0.45). Significantly more female Culex mosquitoes were attracted to IB1-treated cotton than to the other treatments (P < 0.001). Whereas IB1-impregnated cotton and cellulose + polyacrylate material attracted equal numbers of female Mansonia mosquitoes (P = 0.44), the catches due to these two substrates were significantly higher than those associated with the other substrates (P < 0.001). Conclusion: The number and species of mosquitoes attracted to a synthetic odour blend is influenced by the type of odour-dispensing material used. Thus, surveillance and intervention programmes for malaria and other mosquito vectors using attractive odour baits should select an odour-release material that optimizes the odour blend

    Malaria Infection Increases Attractiveness of Humans to Mosquitoes

    Get PDF
    Do malaria parasites enhance the attractiveness of humans to the parasite's vector? As such manipulation would have important implications for the epidemiology of the disease, the question has been debated for many years. To investigate the issue in a semi-natural situation, we assayed the attractiveness of 12 groups of three western Kenyan children to the main African malaria vector, the mosquito Anopheles gambiae. In each group, one child was uninfected, one was naturally infected with the asexual (non-infective) stage of Plasmodium falciparum, and one harboured the parasite's gametocytes (the stage transmissible to mosquitoes). The children harbouring gametocytes attracted about twice as many mosquitoes as the two other classes of children. In a second assay of the same children, when the parasites had been cleared with anti-malarial treatment, the attractiveness was similar between the three classes of children. In particular, the children who had previously harboured gametocytes, but had now cleared the parasite, were not more attractive than other children. This ruled out the possibility of a bias due to differential intrinsic attractiveness of the children to mosquitoes and strongly suggests that gametocytes increase the attractiveness of the children

    Attraction of Anopheles gambiae to odour baits augmented with heat and moisture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The search for a standard human surrogate in the form of a synthetic mosquito attractant has been the goal of many laboratories around the world. Besides alleviating the occupational risk subjected to volunteers participating in vector surveillance and control, discovery of potent attractants underpins the development and deployment of mass trapping devices for controlling mosquito-borne diseases.</p> <p>Methods</p> <p>A dual-port olfactometer was used to assess behavioural responses of female <it>Anopheles gambiae </it>mosquitoes towards synthetic versus natural (whole human emanations and worn socks) attractants. The synthetic attractants included a standard blend consisting of ammonia, carbon dioxide and water; and Ifakara blend 1 (IB1) consisting of various aliphatic carboxylic acids. Natural attractants were obtained from two males known to be less and highly attractive (LA and HA, respectively) to the mosquitoes. Mosquito responses to the volunteers' worn socks were also investigated. The effect of heat (25-27°C) and moisture (75-85%) on the mosquito behavioural responses was determined.</p> <p>Results</p> <p>A significantly higher proportion of mosquitoes was attracted to each volunteer when compared to the standard blend. Whereas the proportion of mosquitoes attracted to person LA versus IB1 (49% versus 51%, respectively; P = 0.417) or his worn socks did not differ (61% versus 39%, respectively; P = 0.163), far more mosquitoes were attracted to person HA relative to IB1 (96% versus 4%; P = 0.001) or his worn socks (91% versus 9%; P = 0.001). Person HA attracted a significantly higher proportion of mosquitoes than his worn socks, the standard blend and IB1 when these were augmented with heat, moisture or both (P = 0.001). Similar results were obtained with person LA except that the proportion of mosquitoes attracted to him versus his worn sock augmented with heat (P = 0.65) or IB1 augmented with heat and moisture (P = 0.416) did not differ significantly.</p> <p>Conclusions</p> <p>These findings indicate that olfactory cues are key mediators of the mosquito host-seeking process and that heat and moisture play a minor role. The need for a standard, highly stringent positive control for screening synthetic attractants is strongly highlighted.</p

    Integrated research partnerships for malaria control through an ecohealth approach in East Africa : Kenya, Rwanda, Tanzania and Uganda projects; final report

    Get PDF
    The study focuses on linkages between malaria and livelihoods, malaria and ecosystems, and malaria and health systems. Malaria was found to be relatively low in savannah areas compared to rice irrigation agroecology. The report provides detailed breakdowns of project outputs, outcomes and impacts. The four agro-ecosystems in study countries (Rusinga Island (Kenya), Nyagatare District (Rwanda), Kilosa District (Tanzania) and Kamuli District in Uganda) were rice irrigation, savannah, and maize and mixed farming. The findings indicate that the main livelihoods of people in East Africa are driven by water availability and resource management availability (crop farming, livestock farming and fishing)

    MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya

    Get PDF
    BACKGROUND: The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. METHODS: We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs), we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. RESULTS: Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking) occurred successfully. CONCLUSION: The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritised. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases

    Development and optimization of the Suna trap as a tool for mosquito monitoring and control

    Get PDF
    Background Monitoring of malaria vector populations provides information about disease transmission risk, as well as measures of the effectiveness of vector control. The Suna trap is introduced and evaluated with regard to its potential as a new, standardized, odour-baited tool for mosquito monitoring and control. Methods Dual-choice experiments with female Anopheles gambiae sensu lato in a laboratory room and semi-field enclosure, were used to compare catch rates of odour-baited Suna traps and MM-X traps. The relative performance of the Suna trap, CDC light trap and MM-X trap as monitoring tools was assessed inside a human-occupied experimental hut in a semi-field enclosure. Use of the Suna trap as a tool to prevent mosquito house entry was also evaluated in the semi-field enclosure. The optimal hanging height of Suna traps was determined by placing traps at heights ranging from 15 to 105 cm above ground outside houses in western Kenya. Results In the laboratory the mean proportion of An. gambiae s.l. caught in the Suna trap was 3.2 times greater than the MM-X trap (P &lt;0.001), but the traps performed equally in semi-field conditions (P = 0.615). As a monitoring tool , the Suna trap outperformed an unlit CDC light trap (P &lt;0.001), but trap performance was equal when the CDC light trap was illuminated (P = 0.127). Suspending a Suna trap outside an experimental hut reduced entry rates by 32.8% (P &lt;0.001). Under field conditions, suspending the trap at 30 cm above ground resulted in the greatest catch sizes (mean 25.8 An. gambiae s.l. per trap night). Conclusions The performance of the Suna trap equals that of the CDC light trap and MM-X trap when used to sample An. gambiae inside a human-occupied house under semi-field conditions. The trap is effective in sampling mosquitoes outside houses in the field, and the use of a synthetic blend of attractants negates the requirement of a human bait. Hanging a Suna trap outside a house can reduce An. gambiae house entry and its use as a novel tool for reducing malaria transmission risk will be evaluated in peri-domestic settings in sub-Saharan Africa

    Screening mosquito house entry points as a potential method for integrated control of endophagic filariasis, arbovirus and malaria vectors.

    Get PDF
    BACKGROUND: Partial mosquito-proofing of houses with screens and ceilings has the potential to reduce indoor densities of malaria mosquitoes. We wish to measure whether it will also reduce indoor densities of vectors of neglected tropical diseases. METHODOLOGY: The main house entry points preferred by anopheline and culicine vectors were determined through controlled experiments using specially designed experimental huts and village houses in Lupiro village, southern Tanzania. The benefit of screening different entry points (eaves, windows and doors) using PVC-coated fibre glass netting material in terms of reduced indoor densities of mosquitoes was evaluated compared to the control. FINDINGS: 23,027 mosquitoes were caught with CDC light traps; 77.9% (17,929) were Anopheles gambiae sensu lato, of which 66.2% were An. arabiensis and 33.8% An. gambiae sensu stricto. The remainder comprised 0.2% (50) An. funestus, 10.2% (2359) Culex spp. and 11.6% (2664) Mansonia spp. Screening eaves reduced densities of Anopheles gambiae s. l. (Relative ratio (RR) = 0.91; 95% CI = 0.84, 0.98; P = 0.01); Mansonia africana (RR = 0.43; 95% CI = 0.26, 0.76; P<0.001) and Mansonia uniformis (RR = 0.37; 95% CI = 0.25, 0.56; P<0.001) but not Culex quinquefasciatus, Cx. univittatus or Cx. theileri. Numbers of these species were reduced by screening windows and doors but this was not significant. SIGNIFICANCE: This study confirms that across Africa, screening eaves protects households against important mosquito vectors of filariasis, Rift Valley Fever and O'Nyong nyong as well as malaria. While full house screening is required to exclude Culex species mosquitoes, screening of eaves alone or fitting ceilings has considerable potential for integrated control of other vectors of filariasis, arbovirus and malaria

    Profile : the rusinga health and demographic surveillance system, western Kenya

    Get PDF
    The health and demographic surveillance system on Rusinga Island, Western Kenya, was initiated in 2012 to facilitate a malaria intervention trial: the SolarMal project. The project aims to eliminate malaria from Rusinga Island using the nationwide adopted strategy for malaria control (insecticide-treated bed nets and case management) augmented with mass trapping of anopheline mosquitoes. The main purpose of the health and demographic surveillance is to measure the effectiveness of the trial on clinical malaria incidence, and to monitor demographic, environmental and malaria-related data variables. At the end of 2014, the 44 km(2) island had a population of approximately 25 000 individuals living in 8746 residential structures. Three times per year, all individuals are followed up and surveyed for clinical malaria. Following each round of surveillance, a randomly selected cross-section of the population is subject to a rapid diagnostic test to measure malaria. Additionally, extensive monitoring of malaria vectors is performed. Data collection and management are conducted using the OpenHDS platform, with tablet computers and applications with advanced software connected to a centralized database. Besides the general demographic information, other health-related data are collected which can be used to facilitate a range of other studies within and outside the current project. Access to the core dataset can be obtained on request from the authors
    corecore