6 research outputs found
Composition and origin of a lithalsa related to lake-level recession and Holocene terrestrial emergence, Northwest Territories, Canada
Lithalsas of the Great Slave Lowland, Northwest Territories, occur within fine-grained glaciolacustrine, lacustrine, and alluvial deposits. Detailed investigations of a lithalsa revealed that it is composed of ice-rich sediments with ice lenses up to 0.2 m thick below 4 m depth. The observed ice accounted for about 2 m of the 4 m between the top of the lithalsa and adjacent terrain. The ice is isotopically similar to modern surface water, but enriched in δ18O relative to local precipitation. Total soluble cation concentrations are low in the basal, Shield-derived and unweathered glaciolacustrine sediments of the lithalsa. Higher concentrations in the overlying Holocene-aged lacustrine and alluvial deposits may be due to greater ion availability in Holocene surface waters. Increasing Cl- and Na+ concentrations in clays at depth likely relate to exclusion and migration of these dissolved ions in pore water during ice lens formation though total soluble cations remain comparatively low. The lithalsa developed 700 to 300 cal yr BP. A conceptual model of lithalsa formation and landscape evolution illustrates that this feature and more than 1800 other lithalsas in the region have developed in association with Holocene terrestrial emergence following lake-level recession. Copyrigh
Holocene eolian sand deposition linked to climatic variability, Northern Great Plains, Canada
The Bigstick and Seward Sand Hills are possibly two of the oldest dune fields within the late Wisconsin glaciated regions of the Northern Great Plains. As with most Northern Great Plains dune fields, source sediments are former proglacial outwash sands. Thus, Holocene dune construction is primarily related to spatial–temporal variations in surface cover and transport capacity, rather than renewed sediment input. However, eolian landscape reconstructions on the Northern Great Plains have been temporally constrained to recent periods of activity, as older episodes of deposition are typically reworked by younger events. In this study, sediment cores from shallow lacustrine basins and interdune areas provide an improved record of Holocene eolian sand deposition. Eolian sand accumulation in the interdunes and basins occurred between 150 and 270 years ago, 1.9 and 3.0 ka, 5.4 and 8.6 ka, and prior to ca. 10.8 ka. These episodes of sand accumulation were bracketed by lacustrine deposition and soil formation, which represented wetter conditions. Other than mid-Holocene dune activity, which may be related to peak warmth and aridity, most periods of eolian sand accumulation coincided with cooler but drier climatic events such as the Younger Dryas, late-Holocene cooling prior to the Medieval Climatic Anomaly, and the ‘Little Ice Age’. These depositional episodes are also spatially represented by other dune fields in the region, providing a broad-scale view of the connections between past climatic events and eolian landscape evolution on the Northern Great Plains
Distribution and activity of ice wedges across the forest-tundra transition, western arctic Canada
Remote sensing, regional ground temperature and ground ice observations, and numerical simulation were used to investigate the size, distribution, and activity of ice wedges in fine-grained mineral and organic soils across the forest-tundra transition in uplands east of theMackenzie Delta. In the northernmost dwarf-shrub tundra, ice wedge polygons cover up to 40% of the ground surface, with the wedges commonly exceeding 3m in width. The largest ice wedges are in peatlands where thermal contraction cracking occurs more frequently than in nearby hummocky terrain with fine-grained soils. There are fewer ice wedges, rarely exceeding 2m in width, in uplands to the south and none have been found in mineral soils of the tall-shrub tundra, although active icewedges are found there throughout peatlands. In the spruce forest zone, small, relict ice wedges are restricted to peatlands. At tundra sites, winter temperatures at the top of permafrost are lower in organic than mineral soils because of the shallow permafrost table, occurrence of phase change at 0°C, and the relatively high thermal conductivity of icy peat. Due to these factors and the high coefficient of thermal contraction of frozen saturated peat, ice wedge cracking and growth is more common in peatlands than in mineral soil. However, the high latent heat content of saturated organic active layer soils may inhibit freezeback, particularly where thick snow accumulates,making the permafrost and the ice wedges in spruce forest polygonal peatlands susceptible to degradation following alteration of drainage or climate warming
Search for new physics in the lepton plus missing transverse momentum final state in proton-proton collisions at 13 TeV
International audienceA search for physics beyond the standard model (SM) in final states with an electron or muon and missing transverse momentum is presented. The analysis uses data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected with the CMS detector at the LHC in 2016-2018 and corresponding to an integrated luminosity of 138 fb. No significant deviation from the SM prediction is observed. Model-independent limits are set on the production cross section of W' bosons decaying into lepton-plus-neutrino final states. Within the framework of the sequential standard model, with the combined results from the electron and muon decay channels a W' boson with mass less than 5.7 TeV is excluded at 95% confidence level. Results on a SM precision test, the determination of the oblique electroweak parameter, are presented using LHC data for the first time. These results together with those from the direct W' resonance search are used to extend existing constraints on composite Higgs scenarios. This is the first experimental exclusion on compositeness parameters using results from LHC data other than Higgs boson measurements