2,621 research outputs found

    Human Systems Integration: Requirements and Functional Decomposition

    Get PDF
    This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given

    SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems

    Get PDF
    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450 - 900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/22, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (<<25 pc) with masses ranging from a few Jupiter masses to Super Earths (\sim2 Earth radii, \sim10 M_{\oplus}) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System

    An Accreting White Dwarf near the Chandrasekhar Limit in the Andromeda Galaxy

    Get PDF
    The iPTF (Intermediate Palomar Transient Factory) detection of the most recent outburst of the recurrent nova system RX J0045.4+4154 in the Andromeda Galaxy has enabled the unprecedented study of a massive (mass is greater than 1.3 solar masses) accreting white dwarf (WD). We detected this nova as part of the near daily iPTF monitoring of M31 to a depth of R (red band-pass filter) approximately equal to magnitude 21 and triggered optical photometry, spectroscopy and soft X-ray monitoring of the outburst. Peaking at an absolute magnitude of MR (red, mid-infrared band-pass filter) equals magnitude 6.6, and with a decay time of 1 magnitude per day, it is a faint and very fast nova. It shows optical emission lines of He/N and expansion velocities of 1900 to 2600 kilometers per second 1-4 days after the optical peak. The Swift monitoring of the X-ray evolution revealed a supersoft source (SSS) with kT (energy: Boltzmann constant times temperature) (sub eff (effective)) approximately equal to 90-110 electronvolts that appeared within 5 days after the optical peak, and lasted only 12 days. Most remarkably, this is not the first event from this system, rather it is a recurrent nova with a time between outbursts of approximately 1 year, the shortest known. Recurrent X-ray emission from this binary was detected by ROSAT in 1992 and 1993, and the source was well characterized as a mass greater than 1.3 solar masses WD SSS. Based on the observed recurrence time between different outbursts, the duration and effective temperature of the SS phase, MESA models of accreting WDs allow us to constrain the accretion rate to mass greater than 1.7x10 (sup 7) solar masses per year and WD mass greater than 1.30 solar masses. If the WD keeps 30 percent of the accreted material, it will take less than a million years to reach core densities high enough for carbon ignition (if made of C/O) or electron capture (if made of O/Ne) to end the binary evolution

    Accuracy and precision in quantitative fluorescence microscopy

    Get PDF
    The light microscope has long been used to document the localization of fluorescent molecules in cell biology research. With advances in digital cameras and the discovery and development of genetically encoded fluorophores, there has been a huge increase in the use of fluorescence microscopy to quantify spatial and temporal measurements of fluorescent molecules in biological specimens. Whether simply comparing the relative intensities of two fluorescent specimens, or using advanced techniques like Förster resonance energy transfer (FRET) or fluorescence recovery after photobleaching (FRAP), quantitation of fluorescence requires a thorough understanding of the limitations of and proper use of the different components of the imaging system. Here, I focus on the parameters of digital image acquisition that affect the accuracy and precision of quantitative fluorescence microscopy measurements

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore