36,202 research outputs found

    Damping of Oscillations in Layer-by-Layer Growth

    Full text link
    We present a theory for the damping of layer-by-layer growth oscillations in molecular beam epitaxy. The surface becomes rough on distances larger than a layer coherence length which is substantially larger than the diffusion length. The damping time can be calculated by a comparison of the competing roughening and smoothening mechanisms. The dependence on the growth conditions, temperature and deposition rate, is characterized by a power law. The theoretical results are confirmed by computer simulations.Comment: 19 pages, RevTex, 5 Postscript figures, needs psfig.st

    Propagation of Exchange Bias in CoFe/FeMn/CoFe Trilayers

    Full text link
    CoFe/FeMn, FeMn/CoFe bilayers and CoFe/FeMn/CoFe trilayers were grown in magnetic field and at room temperature. The exchange bias field HebH_{eb} depends strongly on the order of depositions and is much higher at CoFe/FeMn than at FeMn/CoFe interfaces. By combining the two bilayer structures into symmetric CoFe/FeMn(tFeMnt_\mathrm{FeMn})/CoFe trilayers, HebtH_{eb}^t and HebbH_{eb}^b of the top and bottom CoFe layers, respectively, are both enhanced. Reducing tFeMnt_\mathrm{FeMn} of the trilayers also results in enhancements of both HebbH_{eb}^b and HebtH_{eb}^t. These results evidence the propagation of exchange bias between the two CoFe/FeMn and FeMn/CoFe interfaces mediated by the FeMn antiferromagnetic order

    Research in interactive scene analysis

    Get PDF
    An interactive scene interpretation system (ISIS) was developed as a tool for constructing and experimenting with man-machine and automatic scene analysis methods tailored for particular image domains. A recently developed region analysis subsystem based on the paradigm of Brice and Fennema is described. Using this subsystem a series of experiments was conducted to determine good criteria for initially partitioning a scene into atomic regions and for merging these regions into a final partition of the scene along object boundaries. Semantic (problem-dependent) knowledge is essential for complete, correct partitions of complex real-world scenes. An interactive approach to semantic scene segmentation was developed and demonstrated on both landscape and indoor scenes. This approach provides a reasonable methodology for segmenting scenes that cannot be processed completely automatically, and is a promising basis for a future automatic system. A program is described that can automatically generate strategies for finding specific objects in a scene based on manually designated pictorial examples

    Piling and avalanches of magnetized particles

    Full text link
    We performed computer simulations based on a two-dimensional Distinct Element Method to study granular systems of magnetized spherical particles. We measured the angle of repose and the surface roughness of particle piles, and we studied the effect of magnetization on avalanching. We report linear dependence of both angle of repose and surface roughness on the ratio ff of the magnetic dipole interaction and the gravitational force (\emph{interparticle force ratio}). There is a difference in avalanche formation at small and at large interparticle force ratios. The transition is at fc7f_c \approx 7. For f<fcf < f_c the particles forming the avalanches leave the system in a quasi-continuous granular flow (\emph{granular regime}), while for f>fcf > f_c the avalanches are formed by long particle clusters (\emph{correlated regime}). The transition is not sharp. We give plausible estimates for fcf_c based on stability criteria.Comment: 9 pages, 7 figure

    Grain boundary energies and cohesive strength as a function of geometry

    Full text link
    Cohesive laws are stress-strain curves used in finite element calculations to describe the debonding of interfaces such as grain boundaries. It would be convenient to describe grain boundary cohesive laws as a function of the parameters needed to describe the grain boundary geometry; two parameters in 2D and 5 parameters in 3D. However, we find that the cohesive law is not a smooth function of these parameters. In fact, it is discontinuous at geometries for which the two grains have repeat distances that are rational with respect to one another. Using atomistic simulations, we extract grain boundary energies and cohesive laws of grain boundary fracture in 2D with a Lennard-Jones potential for all possible geometries which can be simulated within periodic boundary conditions with a maximum box size. We introduce a model where grain boundaries are represented as high symmetry boundaries decorated by extra dislocations. Using it, we develop a functional form for the symmetric grain boundary energies, which have cusps at all high symmetry angles. We also find the asymptotic form of the fracture toughness near the discontinuities at high symmetry grain boundaries using our dislocation decoration model.Comment: 12 pages, 19 figures, changed titl

    X-ray structure analysis of the InSb ( )-(3 × 3) reconstruction

    Get PDF
    The (3 × 3) reconstruction of the InSb( ) surface has been analysed using grazing incidence X-ray diffraction. The reconstruction is characterized by hexamers above a complete InSb double-layer centred around an Sb atom. No vacancies are found in the structure as predicted theoretically. The results agree with scanning tunnelling microscopy measurements
    corecore