17 research outputs found
Telehealth Diagnosis of Autism Spectrum Disorder through Clinical Cases
A diagnosis of autism spectrum disorder (ASD) provides access to interventions that are important for fostering development and improving quality of life. Thus, the timeliness of a diagnosis should not be limited by social-distancing limitations whenever possible. Despite this, clear guidance for transitioning autism diagnostic services to a telehealth model of care in the era of the COVID-19 pandemic is lacking. At our Institute, we have adapted our approach to ASD evaluation to promote continued access to evaluation services during this unprecedented time. The purpose of this case series is to provide examples of three different approaches to ASD differential diagnostic services via telehealth that we have taken at our Institute. We illustrate our methods and clinical decision-making, based on patient characteristics and referral aims, in providing telehealth diagnostic services and discuss the advantages and limitations of telehealth utilization in the differential diagnosis of ASD. At our Institute, telehealth services have provided an invaluable opportunity to continue to confirm (or rule out) an ASD diagnosis when appropriate to facilitate access to services during this time. Future research examining the utility of telehealth in the differential diagnosis of ASD is imperative given the potential advantages of telehealth services beyond the COVID-19 pandemic for some patients
Evaluating causal psychological models: A study of language theories of autism using a large sample
We used a large convenience sample (n = 22,223) from the Simons Powering Autism Research (SPARK) dataset to evaluate causal, explanatory theories of core autism symptoms. In particular, the data-items collected supported the testing of theories that posited altered language abilities as cause of social withdrawal, as well as alternative theories that competed with these language theories. Our results using this large dataset converge with the evolution of the field in the decades since these theories were first proposed, namely supporting primary social withdrawal (in some cases of autism) as a cause of altered language development, rather than vice versa.To accomplish the above empiric goals, we used a highly theory-constrained approach, one which differs from current data-driven modeling trends but is coherent with a very recent resurgence in theory-driven psychology. In addition to careful explication and formalization of theoretical accounts, we propose three principles for future work of this type: specification, quantification, and integration. Specification refers to constraining models with pre-existing data, from both outside and within autism research, with more elaborate models and more veridical measures, and with longitudinal data collection. Quantification refers to using continuous measures of both psychological causes and effects, as well as weighted graphs. This approach avoids “universality and uniqueness” tests that hold that a single cognitive difference could be responsible for a heterogeneous and complex behavioral phenotype. Integration of multiple explanatory paths within a single model helps the field examine for multiple contributors to a single behavioral feature or to multiple behavioral features. It also allows integration of explanatory theories across multiple current-day diagnoses and as well as typical development
The Role of Attention in Somatosensory Processing: A Multi-trait, Multi-method Analysis
Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different traits)/cross-trait (e.g., attention and tactile sensitivity) correlations, suggesting that parent-reported tactile sensory dysfunction and performance-based tactile sensitivity describe different behavioral phenomena. Additionally, both parent-reported tactile functioning and performance-based tactile sensitivity measures were significantly associated with measures of attention. Findings suggest that sensory (tactile) processing abnormalities in ASD are multifaceted, and may partially reflect a more global deficit in behavioral regulation (including attention). Challenges of relying solely on parent-report to describe sensory difficulties faced by children/families with ASD are also highlighted
A vibrotactile behavioral battery for investigating somatosensory processing in children and adults
The cortical dynamics of somatosensory processing can be investigated using vibrotactile psychophysics. It has been suggested that different vibrotactile paradigms target different cortical mechanisms, and a number of recent studies have established links between somatosensory cortical function and measurable aspects of behavior. The relationship between cortical mechanisms and sensory function is particularly relevant with respect to developmental disorders in which altered inhibitory processing has been postulated, such as in ASD and ADHD. In this study, a vibrotactile battery consisting of nine tasks (incorporating reaction time, detection threshold, and amplitude- and frequency discrimination) was applied to a cohort of healthy adults and a cohort of typically developing children to assess the feasibility of such a vibrotactile battery in both cohorts, and the performance between children and adults was compared. These results showed that children and adults were both able to perform these tasks with a similar performance, although the children were slightly less sensitive in frequency discrimination. Performance within different task-groups clustered together in adults, providing further evidence that these tasks tap into different cortical mechanisms, which is also discussed. This clustering was not observed in children, which may be potentially indicative of development and a greater variability. In conclusion, in this study, we showed that both children and adults were able to perform an extensive vibrotactile battery, and we showed the feasibility of applying this battery to other (e.g., neurodevelopmental) cohorts to probe different cortical mechanisms
Examining the Latent Structure and Correlates of Sensory Reactivity in Autism: A Multi-Site Integrative Data Analysis by the Autism Sensory Research Consortium
BACKGROUND: Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these supra-modal traits in the autistic population.
METHODS: Leveraging a combined sample of 3868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a general response pattern factor for each supra-modal construct and determine the added value of modality-specific response pattern scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO, and SEEK (sub)constructs.
RESULTS: All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses supported the validity of a supra-modal HYPER construct (ω
LIMITATIONS: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to caregiver report of observable behaviors and excluded multisensory items that reflect many real-world sensory experiences.
CONCLUSION: Of the three sensory response patterns, only HYPER demonstrated sufficient evidence for valid interpretation at the supra-modal level, whereas supra-modal HYPO/SEEK constructs demonstrated substantial psychometric limitations. For clinicians and researchers seeking to characterize sensory reactivity in autism, modality-specific response pattern scores may represent viable alternatives that overcome many of these limitations
Autism spectrum disorder in the scope of tactile processing
Sensory processing abnormalities are among the most common behavioral phenotypes seen in autism spectrum disorder (ASD), typically characterized by either over- or under-responsiveness to stimulation. In this review, we focus on tactile processing dysfunction in ASD. We firstly review clinical studies wherein sensitivity to tactile stimuli has traditionally been assessed by self-, parent- and experimenter-reports. We also discuss recent investigations using psychophysical paradigms that gauge individual tactile thresholds. These more experimentally rigorous studies allow for more objective assessments of tactile abnormalities in ASD. However, little is understood about the neurobiological mechanisms underlying these abnormalities, or the link between tactile abnormalities and ASD symptoms. Neurobiological research that has been conducted has pointed toward dysfunction in the excitation/inhibition balance of the central nervous system of those with ASD. This review covers recent efforts that have investigated tactile dysfunction in ASD from clinical and behavioral perspectives, and some of the efforts to link these to neurobiology. On the whole, findings are inconsistent, which can be ascribed to the subjectivity of clinical assessments, the heterogeneity of ASD cohorts, and the diversity of tactile sensitivity measures. Future endeavors into understanding tactile processing differences in ASD will greatly benefit from controlled experiments driven by neurobiological hypotheses. Keywords: Autism spectrum disorder, Psychophysics, Review, Touch, Somatosensory, Tactile processin
Disorder-specific alterations of tactile sensitivity in neurodevelopmental disorders
Alterations of tactile processing have long been identified in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). However, the extent to which these alterations are disorder-specific, rather than disorder-general, and how they relate to the core symptoms of each disorder, remains unclear. We measured and compared tactile detection, discrimination and order judgment thresholds between a large sample of children with ASD, ADHD, ASD + ADHD combined and typically developing controls. The pattern of results suggested that while difficulties with tactile detection and order judgement were more common in children with ADHD, difficulties with tactile discrimination were more common in children with ASD. Strikingly, subsequent correlation analyses found that the disorder-specific alterations suggested by the group comparisons were also exclusively related to the core symptoms of each respective disorder. These results suggest that disorder-specific alterations of lower-level sensory processes exist and are specifically related to higher-level clinical symptoms of each disorder