8 research outputs found

    Cosmology with next generation radio telescopes

    Get PDF
    Philosophiae Doctor - PhDThe next generation of radio telescopes will revolutionize cosmology by providing large three-dimensional surveys of the universe. This work presents forecasts using the technique 21cm intensity mapping (IM) combined with results from the cosmic microwave background, or mock data of galaxy surveys. First, we discuss prospects of constraining curvature independently of the dark energy (DE) model, finding that the radio instrument HIRAX will reach percent-level accuracy even when an arbitrary DE equation of state is assumed. This is followed by a study of the potential of the multi-tracer technique to surpass the cosmic variance limit, a crucial method to probe primordial non-Gaussianity and large scale general relativistic e↵ects. Using full sky simulations for the Square Kilometre Array phase 1 (SKA 1 MID) and the Large Synoptic Survey Telescope (LSST), including foregrounds, we demonstrate that the cosmic variance contaminated scenario can be beaten even in the noise free case. Finally, we derive the signal to noise ratio for the cosmic magnification signal from foreground HI intensity maps combined with background galaxy count maps. Instruments like SKA1 MID and HIRAX are highly complementary and well suited for this measurement. Thanks to the powerful design of the planned radio instruments, all results confirm their potential and promise an exciting future for cosmology

    Simulating the Large-Scale Structure of HI Intensity Maps

    Full text link
    Intensity mapping of neutral hydrogen (HI) is a promising observational probe of cosmology and large-scale structure. We present wide field simulations of HI intensity maps based on N-body simulations of a 2.6 Gpc/h2.6\, {\rm Gpc / h} box with 204832048^3 particles (particle mass 1.6×1011 M⊙/h1.6 \times 10^{11}\, {\rm M_\odot / h}). Using a conditional mass function to populate the simulated dark matter density field with halos below the mass resolution of the simulation (108 M⊙/h<Mhalo<1013 M⊙/h10^{8}\, {\rm M_\odot / h} < M_{\rm halo} < 10^{13}\, {\rm M_\odot / h}), we assign HI to those halos according to a phenomenological halo to HI mass relation. The simulations span a redshift range of 0.35 < z < 0.9 in redshift bins of width Δz≈0.05\Delta z \approx 0.05 and cover a quarter of the sky at an angular resolution of about 7'. We use the simulated intensity maps to study the impact of non-linear effects and redshift space distortions on the angular clustering of HI. Focusing on the autocorrelations of the maps, we apply and compare several estimators for the angular power spectrum and its covariance. We verify that these estimators agree with analytic predictions on large scales and study the validity of approximations based on Gaussian random fields, particularly in the context of the covariance. We discuss how our results and the simulated maps can be useful for planning and interpreting future HI intensity mapping surveys.Comment: 35 pages, 19 Figures. Accepted for publication in JCA

    Simulated multi-tracer analyses with HI intensity mapping

    Full text link
    We use full sky simulations, including the effects of foreground contamination and removal, to explore multi-tracer synergies between a SKA-like 21cm intensity mapping survey and a LSST-like photometric galaxy redshift survey. In particular we study ratios of auto and cross-correlations between the two tracers as estimators of the ratio of their biases, a quantity that should benefit considerably from the cosmic variance cancellation of the multi-tracer approach. We show how well we should be able to measure the bias ratio on very large scales (down to ℓ∼3\ell \sim 3), which is crucial to measure primordial non-Gaussianity and general relativistic effects on large scale structure. We find that, in the absence of foregrounds but with realistic noise levels of such surveys, the multi-tracer estimators are able to improve on the sensitivity of a cosmic-variance contaminated measurement by a factor of 2−42-4. When foregrounds are included, estimators using the 21cm auto-correlation become biased. However, we show that cross-correlation estimators are immune to this and do not incur in any significant penalty in terms of sensitivity from discarding the auto-correlation data. However, the loss of long-wavelength radial modes caused by foreground removal in combination with the low redshift resolution of photometric surveys, reduces the sensitivity of the multi-tracer estimator, albeit still better than the cosmic variance contaminated scenario even in the noise free case. Finally we explore different alternative avenues to avoid this problem.Comment: 14 pages, 11 figures, 1 tabl

    MeerKLASS: MeerKAT Large Area Synoptic Survey

    Full text link
    We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over ∼4,000 deg2\sim 4,000 \, {\rm deg}^2 for ∼4,000\sim 4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5\,μ\muJy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).Comment: Larger version of the paper submitted to the Proceedings of Science, "MeerKAT Science: On the Pathway to the SKA", Stellenbosch, 25-27 May 201

    A Large Sky Survey with MeerKAT

    Get PDF
    We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for cosmological applications, which require large volumes. In particular, a large survey over ~4,000 deg^2 for ~4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as the first constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. The survey will also produce a large continuum galaxy sample down to a depth of 5 µJy in L-band, unmatched by any other concurrent telescope, which will allow to study the large-scale structure of the Universe out to high redshifts. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters, and the discovery of rare high-redshift AGN that can be used to probe the epoch of reionization as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications, as described in the top priority SKA key science projects

    A Large Sky Survey with MeerKAT

    Get PDF
    We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for cosmological applications, which require large volumes. In particular, a large survey over ~4,000 deg^2 for ~4,000 hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as the first constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. The survey will also produce a large continuum galaxy sample down to a depth of 5 µJy in L-band, unmatched by any other concurrent telescope, which will allow to study the large-scale structure of the Universe out to high redshifts. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters, and the discovery of rare high-redshift AGN that can be used to probe the epoch of reionization as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications, as described in the top priority SKA key science projects
    corecore