743 research outputs found
Entrainment of sediment particles by very-large-scale motions
Acknowledgements The study has been supported by two EPSRC/UK grants, ‘High-resolution numerical and experimental studies of turbulence-induced sediment erosion and near-bed transport’ (EP/G056404/1) and ‘Bed friction in rough-bed free-surface flows: a theoretical framework, roughness regimes, and quantification’ (EP/K041088/1). The authors are grateful to three anonymous reviewers and the Editor for constructive criticisms and helpful suggestions that improved the presentation of the material in the paper.Peer reviewedPostprin
An Estimate of the Vibrational Frequencies of Spherical Virus Particles
The possible normal modes of vibration of a nearly spherical virus particle
are discussed. Two simple models for the particle are treated, a liquid drop
model and an elastic sphere model. Some estimates for the lowest vibrational
frequency are given for each model. It is concluded that this frequency is
likely to be of the order of a few GHz for particles with a radius of the order
of 50 nm.Comment: 6 pages, 1 figur
A novel experimental technique and its application to study the effects of particle density and flow submergence on bed particle saltation
This research was sponsored by EPSRC grant EP/G056404/1 which is greatly appreciated.Peer reviewedPublisher PD
Quimioterapia intra-tumoral com carboplatina em carcinoma de células escamosas no plano nasal de gatos: relato de dois casos
O artigo não apresenta resumo
Fractal Dimension and Localization of DNA Knots
The scaling properties of DNA knots of different complexities were studied by
atomic force microscope. Following two different protocols DNA knots are
adsorbed onto a mica surface in regimes of (i) strong binding, that induces a
kinetic trapping of the three-dimensional (3D) configuration, and of (ii) weak
binding, that permits (partial) relaxation on the surface. In (i) the gyration
radius of the adsorbed DNA knot scales with the 3D Flory exponent within error. In (ii), we find , a value between the 3D
and 2D () exponents, indicating an incomplete 2D relaxation or a
different polymer universality class. Compelling evidence is also presented for
the localization of the knot crossings in 2D.Comment: 4 pages, 3 figure
Tourism policy and destination marketing in developing countries: the chain of influence
Tourism marketers including destination marketing organisations (DMOs) and international tour operators play a pivotal role in destination marketing, especially in creating destination images. These images, apparent in tourist brochures, are designed to influence tourist decision-making and behaviour. This paper proposes the concept of a “chain of influence” in destination marketing and image-making, suggesting that the content of marketing materials is influenced by the priorities of those who design these materials, e.g. tour operators and DMOs. A content analysis of 2,000 pictures from DMO and tour operator brochures revealed synergies and divergence between these marketers. The brochure content was then compared to the South African tourism policy, concluding that the dominant factor in the chain of influence in the South African context is in fact its organic image
Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties
Advanced Monte Carlo simulations are used to study the effect of nano-slit
confinement on metric and topological properties of model DNA chains. We
consider both linear and circularised chains with contour lengths in the
1.2--4.8 m range and slits widths spanning continuously the 50--1250nm
range. The metric scaling predicted by de Gennes' blob model is shown to hold
for both linear and circularised DNA up to the strongest levels of confinement.
More notably, the topological properties of the circularised DNA molecules have
two major differences compared to three-dimensional confinement. First, the
overall knotting probability is non-monotonic for increasing confinement and
can be largely enhanced or suppressed compared to the bulk case by simply
varying the slit width. Secondly, the knot population consists of knots that
are far simpler than for three-dimensional confinement. The results suggest
that nano-slits could be used in nano-fluidic setups to produce DNA rings
having simple topologies (including the unknot) or to separate heterogeneous
ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure
- …