18 research outputs found

    The K2-HERMES Survey: Age and Metallicity of the Thick Disc

    Get PDF
    Asteroseismology is a promising tool to study Galactic structure and evolution because it can probe the ages of stars. Earlier attempts comparing seismic data from the {\it Kepler} satellite with predictions from Galaxy models found that the models predicted more low-mass stars compared to the observed distribution of masses. It was unclear if the mismatch was due to inaccuracies in the Galactic models, or the unknown aspects of the selection function of the stars. Using new data from the K2 mission, which has a well-defined selection function, we find that an old metal-poor thick disc, as used in previous Galactic models, is incompatible with the asteroseismic information. We show that spectroscopic measurements of [Fe/H] and [α\alpha/Fe] elemental abundances from the GALAH survey indicate a mean metallicity of log(Z/Z)=0.16\log (Z/Z_{\odot})=-0.16 for the thick disc. Here ZZ is the effective solar-scaled metallicity, which is a function of [Fe/H] and [α\alpha/Fe]. With the revised disc metallicities, for the first time, the theoretically predicted distribution of seismic masses show excellent agreement with the observed distribution of masses. This provides an indirect verification of the asteroseismic mass scaling relation is good to within five percent. Using an importance-sampling framework that takes the selection function into account, we fit a population synthesis model of the Galaxy to the observed seismic and spectroscopic data. Assuming the asteroseismic scaling relations are correct, we estimate the mean age of the thick disc to be about 10 Gyr, in agreement with the traditional idea of an old α\alpha-enhanced thick disc.Comment: 21 pages, submitted to MNRA

    TESS Discovery of a Transiting Super-Earth in the π\pi Mensae System

    Full text link
    We report the detection of a transiting planet around π\pi Mensae (HD 39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The solar-type host star is unusually bright (V=5.7) and was already known to host a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered planet has a size of 2.04±0.052.04\pm 0.05 RR_\oplus and an orbital period of 6.27 days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays a 6.27-day periodicity, confirming the existence of the planet and leading to a mass determination of 4.82±0.854.82\pm 0.85 MM_\oplus. The star's proximity and brightness will facilitate further investigations, such as atmospheric spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry, and direct imaging.Comment: Accepted for publication ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase. The discovery light curve is included in a table inside the arxiv submissio

    The GALAH survey: a catalogue of carbon-enhanced stars and CEMP candidates

    Get PDF
    Swan bands - characteristic molecular absorption features of the C2_2 molecule - are a spectroscopic signature of carbon-enhanced stars. They can also be used to identify carbon-enhanced metal-poor (CEMP) stars. The GALAH (GALactic Archaeology with Hermes) is a magnitude-limited survey of stars producing high-resolution, high signal-to-noise spectra. We used 627,708 GALAH spectra to search for carbon-enhanced stars with a supervised and unsupervised classification algorithm, relying on the imprint of the Swan bands. We identified 918 carbon-enhanced stars, including 12 already described in the literature. An unbiased selection function of the GALAH survey allows us to perform a population study of carbon-enhanced stars. Most of them are giants, out of which we find 28 CEMP candidates. A large fraction of our carbon-enhanced stars with repeated observations show variation in radial velocity, hinting that there is a large fraction of variables among them. 32 of the detected stars also show strong Lithium enhancement in their spectra.Comment: 13+5 pages, 13 figures, 1 catalog, accepted to MNRA

    <i>TESS</i> Spots a Compact System of Super-Earths around the Naked-eye Star HR 858

    Get PDF
    Transiting Exoplanet Survey Satellite (TESS) observations have revealed a compact multiplanet system around the sixth-magnitude star HR 858 (TIC 178155732, TOI 396), located 32 pc away. Three planets, each about twice the size of Earth, transit this slightly evolved, late F-type star, which is also a member of a visual binary. Two of the planets may be in mean motion resonance. We analyze the TESS observations, using novel methods to model and remove instrumental systematic errors, and combine these data with follow-up observations taken from a suite of ground-based telescopes to characterize the planetary system. The HR 858 planets are enticing targets for precise radial velocity observations, secondary eclipse spectroscopy, and measurements of the Rossiter–McLaughlin effect

    MagAO Imaging of Long-period Objects (MILO). II. A Puzzling White Dwarf around the Sun-like Star HD 11112

    Get PDF
    The version of record, Rodigas, T. J. et al, 'MagAO Imaging of long-period objects (MILO). II. A puzzling white dwarf around the sun-like star HD 11112', The Astrophysical Journal, 831:177, November 2016, is available online via doi: 10.3847/0004-637X/831/2/177 © 2016. The American Astronomical Society. All rights reserved.HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2\fasec 2 (100 AU) at multiple wavelengths spanning 0.6-4 \microns ~and show that it is most likely a gravitationally-bound cool white dwarf. Modeling its spectral energy distribution (SED) suggests that its mass is 0.9-1.1 \msun, which corresponds to very high-eccentricity, near edge-on orbits from Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2σ>2\sigma discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.Peer reviewedFinal Published versio

    The GALAH survey: accurate radial velocities and library of observed stellar template spectra

    Get PDF
    GALAH is a large-scale magnitude-limited southern stellar spectroscopic survey. Its second data release (GALAH DR2) provides values of stellar parameters and abundances of 23 elements for 342 682 stars (Buder et al.). Here we add a description of the public release of radial velocities with a typical accuracy of 0.1 km s-1 for 336 215 of these stars, achievable due to the large wavelength coverage, high resolving power, and good signal-to-noise ratio of the observed spectra, but also because convective motions in stellar atmosphere and gravitational redshift from the star to the observer are taken into account. In the process we derive medians of observed spectra that are nearly noiseless, as they are obtained from between 100 and 1116 observed spectra belonging to the same bin with a width of 50 K in temperature, 0.2 dex in gravity, and 0.1 dex in metallicity. Publicly released 1181 median spectra have a resolving power of 28 000 and trace the well-populated stellar types with metallicities between -0.6 and +0.3. Note that radial velocities from GALAH are an excellent match to the accuracy of velocity components along the sky plane derived by Gaia for the same stars. The level of accuracy achieved here is adequate for studies of dynamics within stellar clusters, associations, and streams in the Galaxy. So it may be relevant for studies of the distribution of dark matter

    Fundamental relations for the velocity dispersion of stars in the Milky Way

    Get PDF
    We explore the fundamental relations governing the radial and vertical velocity dispersions of stars in the Milky Way, from combined studies of complementary surveys including GALAH, LAMOST, APOGEE, the NASA Kepler and K2 missions, and Gaia DR2. We find that different stellar samples, even though they target different tracer populations and employ a variety of age estimation techniques, follow the same set of fundamental relations. We provide the clearest evidence to date that, in addition to the well-known dependence on stellar age, the velocity dispersions of stars depend on orbital angular momentum Lz, metallicity and height above the plane |z|, and are well described by a multiplicatively separable functional form. The dispersions have a power-law dependence on age with exponents of 0.441±0.007 and 0.251±0.006 for σz and σR respectively, and the power law is valid even for the oldest stars. For the solar neighborhood stars, the apparent break in the power law for older stars, as seen in previous studies, is due to the anti-correlation of Lz with age. The dispersions decrease with increasing Lz until we reach the Sun's orbital angular momentum, after which σz increases (implying flaring in the outer disc) while σR flattens. For a given age, the dispersions increase with decreasing metallicity, suggesting that the dispersions increase with birth radius. The dispersions also increase linearly with |z|. The same set of relations that work in the solar neighborhood also work for stars between 3 < R/kpc < 20. Finally, the high-[α/Fe] stars follow the same relations as the low-[α/Fe] stars
    corecore