97 research outputs found

    Isosorbide dinitrate, with or without hydralazine, does not reduce wave reflections, left ventricular hypertrophy, or myocardial fibrosis in patients with heart failure with preserved ejection fraction

    Get PDF
    Background-Wave reflections, which are increased in patients with heart failure with preserved ejection fraction, impair diastolic function and promote pathologic myocardial remodeling. Organic nitrates reduce wave reflections acutely, but whether this is sustained chronically or affected by hydralazine coadministration is unknown. Methods and Results-We randomized 44 patients with heart failure with preserved ejection fraction in a double-blinded fashion to isosorbide dinitrate (ISDN; n=13), ISDN+hydralazine (ISDN+hydral; n=15), or placebo (n=16) for 6months. The primary end point was the change in reflection magnitude (RM; assessed with arterial tonometry and Doppler echocardiography). Secondary end points included change in left ventricular mass and fibrosis, measured with cardiac magnetic resonance imaging, and the 6-minute walk distance. ISDN reduced aortic characteristic impedance (mean baseline=0.15 [95% CI, 0.14-0.17], 3 months=0.11 [95% CI, 0.10-0.13], 6 months=0.10 [95% CI, 0.08-0.12] mmHg/mL per second; P=0.003) and forward wave amplitude (P-f, mean baseline=54.8 [95% CI, 47.6-62.0], 3 months=42.2 [95% CI, 33.2-51.3]; 6 months=37.0 [95% CI, 27.2-46.8] mmHg, P=0.04), but had no effect on RM (P=0.64), left ventricular mass (P=0.33), or fibrosis (P=0.63). ISDN+hydral increased RM (mean baseline=0.39 [95% CI, 0.35-0.43]; 3 months=0.31 [95% CI, 0.25-0.36]; 6 months=0.44 [95% CI, 0.37-0.51], P=0.03), reduced 6-minute walk distance (mean baseline=343.3 [95% CI, 319.2-367.4]; 6 months=277.0 [95% CI, 242.7-311.4] meters, P=0.022), and increased native myocardial T1 (mean baseline=1016.2 [95% CI, 1002.7-1029.7]; 6 months=1054.5 [95% CI, 1036.5-1072.3], P=0.021). A high proportion of patients experienced adverse events with active therapy (ISDN=61.5%, ISDN+hydral=60.0%; placebo=12.5%; P=0.007). Conclusions-ISDN, with or without hydralazine, does not exert beneficial effects on RM, left ventricular remodeling, or submaximal exercise and is poorly tolerated. ISDN+hydral appears to have deleterious effects on RM, myocardial remodeling, and submaximal exercise. Our findings do not support the routine use of these vasodilators in patients with heart failure with preserved ejection fraction

    Arterial properties as determinants of left ventricular mass and fibrosis in severe aortic Stenosis : findings from ACRIN PA 4008

    No full text
    Background-The role of arterial load in severe aortic stenosis is increasingly recognized. However, patterns of pulsatile load and their implications in this population are unknown. We aimed to assess the relationship between the arterial properties and both (1) left ventricular remodeling and fibrosis and (2) the clinical course of patients with severe aortic stenosis undergoing aortic valve replacement (AVR). Methods and Results-We enrolled 38 participants with symptomatic severe aortic stenosis scheduled to undergo surgical AVR. Aortic root characteristic impedance, wave reflections parameters (reflection magnitude, reflected wave transit time), and myocardial extracellular mass were measured with cardiac magnetic resonance imaging and arterial tonometry Cardiac magnetic resonance imaging was repeated at 6 months in 30 participants. A reduction in cellular mass (133.6 versus 113.9 g; P=0.002) but not extracellular mass (42.3 versus 40.6 g; P=0.67) was seen after AVR. Participants with higher extracellular mass exhibited greater reflection magnitude (0.68 versus 0.54; P=0.006) and lower aortic root characteristic impedance (56.3 versus 96.9 dynes/s per cm(5); P=0.006). Reflection magnitude was a significant predictor of smaller improvement in the quality of life (Kansas City Cardiomyopathy Questionnaire score) after AVR (R=-0.51; P=0.0026). The 6-minute walk distance at 6 months after AVR was positively correlated with the reflected wave transit time (R=0.52; P=0.01). Conclusions-Consistent with animal studies, arterial wave reflections are associated with interstitial volume expansion in severe aortic stenosis and predict a smaller improvement in quality of life following AVR. Future trials should assess whether wave reflections represent a potential therapeutic target to mitigate myocardial interstitial remodeling and to improve the clinical status of this patient population

    Erratum to: Assessment of myocardial injury after reperfused infarction by T1ρ cardiovascular magnetic resonance

    Get PDF
    BackgroundThe evolution of T1ρ and of other endogenous contrast methods (T2, T1) in the first month after reperfused myocardial infarction (MI) is uncertain. We conducted a study of reperfused MI in pigs to serially monitor T1ρ, T2 and T1 relaxation, scar size and transmurality at 1 and 4 weeks post-MI.MethodsTen Yorkshire swine underwent 90 min of occlusion of the circumflex artery and reperfusion. T1ρ, T2 and native T1 maps and late gadolinium enhanced (LGE) cardiovascular magnetic resonance (CMR) data were collected at 1 week (n = 10) and 4 weeks (n = 5). Semi-automatic FWHM (full width half maximum) thresholding was used to assess scar size and transmurality and compared to histology. Relaxation times and contrast-to-noise ratio were compared in healthy and remote myocardium at 1 and 4 weeks. Linear regression and Bland-Altman was performed to compare infarct size and transmurality.ResultsRelaxation time differences between infarcted and remote myocardial tissue were βˆ†T1 (infarct-remote) = 421.3 ± 108.8 (1 week) and 480.0 ± 33.2 ms (4 week), βˆ†T1ρ = 68.1 ± 11.6 and 74.3 ± 14.2, and βˆ†T2 = 51.0 ± 10.1 and 59.2 ± 11.4 ms. Contrast-to-noise ratio was CNRT1 = 7.0 ± 3.5 (1 week) and 6.9 ± 2.4 (4 week), CNRT1ρ = 12.0 ± 6.2 and 12.3 ± 3.2, and CNRT2 = 8.0 ± 3.6 and 10.3 ± 5.8. Infarct size was not significantly different for T1ρ, T1 and T2 compared to LGE (p = 0.14) and significantly decreased from 1 to 4 weeks (p < 0.01). Individual infarct size changes were βˆ†T1ρ = -3.8%, βˆ†T1 = -3.5% and βˆ†LGE = -2.8% from 1 - 4 weeks, but there was no observed change in infarct size for T2 or histologically.ConclusionsT1ρ was highly correlated with alterations left ventricle (LV) pathology at 1 and 4 weeks post-MI and therefore it may be a useful method endogenous contrast imaging of infarction

    User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias

    Get PDF
    BACKGROUND: Data obtained during arrhythmia is retained in real-time cardiovascular magnetic resonance (rt-CMR), but there is limited and inconsistent evidence to show that rt-CMR can accurately assess beat-to-beat variation in left ventricular (LV) function or during an arrhythmia. METHODS: Multi-slice, short axis cine and real-time golden-angle radial CMR data was collected in 22 clinical patients (18 in sinus rhythm and 4 patients with arrhythmia). A user-initialized active contour segmentation (ACS) software was validated via comparison to manual segmentation on clinically accepted software. For each image in the 2D acquisitions, slice volume was calculated and global LV volumes were estimated via summation across the LV using multiple slices. Real-time imaging data was reconstructed using different image exposure times and frame rates to evaluate the effect of temporal resolution on measured function in each slice via ACS. Finally, global volumetric function of ectopic and non-ectopic beats was measured using ACS in patients with arrhythmias. RESULTS: ACS provides global LV volume measurements that are not significantly different from manual quantification of retrospectively gated cine images in sinus rhythm patients. With an exposure time of 95.2Β ms and a frame rate of > 89 frames per second, golden-angle real-time imaging accurately captures hemodynamic function over a range of patient heart rates. In four patients with frequent ectopic contractions, initial quantification of the impact of ectopic beats on hemodynamic function was demonstrated. CONCLUSION: User-initialized active contours and golden-angle real-time radial CMR can be used to determine time-varying LV function in patients. These methods will be very useful for the assessment of LV function in patients with frequent arrhythmias

    Accuracy and reproducibility of T1rho mapping sequences

    No full text
    • …
    corecore