13 research outputs found

    Absolute Frequency Measurement of Rubidium 5S-7S Two-Photon Transitions

    Full text link
    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm) insensitive to first order in a magnetic field, is a promising candidate for frequency reference. The performed tests yield the transition frequency with accuracy better than reported previously.Comment: This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at http://dx.doi.org/10.1364/OL.38.004581. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under la

    Matter-Wave Interference versus Spontaneous Pattern Formation in Spinor Bose-Einstein Condensate

    Full text link
    We describe effects of matter-wave interference of spinor states in the 87^{87}Rb Bose-Einstein condensate. The components of the F=2 manifold are populated by forced Majorana transitions and then fall freely due to gravity in an applied magnetic field. Weak inhomogeneities of the magnetic field, present in the experiment, impose relative velocities onto different mFm_F components, which show up as interference patterns upon measurement of atomic density distributions with a Stern-Gerlach imaging method. We show that interference effects may appear in experiments even if gradients of the magnetic field components are eliminated but higher order inhomogeneity is present and the duration of the interaction is long enough. In particular, we show that the resulting matter-wave interference patterns can mimic spontaneous pattern formation in the quantum gas.Comment: 5 pages, 4 figures, version accepted in Phys. Rev.

    Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument

    Get PDF
    The chemical composition of aerosol particles is a key aspect in determining their impact on the environment. For example, nitrogen-containing particles impact atmospheric chemistry, air quality, and ecological N deposition. Instruments that measure total reactive nitrogen (Nr Combining double low line all nitrogen compounds except for N2 and N2O) focus on gas-phase nitrogen and very few studies directly discuss the instrument capacity to measure the mass of Nr-containing particles. Here, we investigate the mass quantification of particle-bound nitrogen using a custom Nr system that involves total conversion to nitric oxide (NO) across platinum and molybdenum catalysts followed by NOĝ\u27O3 chemiluminescence detection. We evaluate the particle conversion of the Nr instrument by comparing to mass-derived concentrations of size-selected and counted ammonium sulfate ((NH4)2SO4), ammonium nitrate (NH4NO3), ammonium chloride (NH4Cl), sodium nitrate (NaNO3), and ammonium oxalate ((NH4)2C2O4) particles determined using instruments that measure particle number and size. These measurements demonstrate Nr-particle conversion across the Nr catalysts that is independent of particle size with 98ĝ€±ĝ€10ĝ€% efficiency for 100-600ĝ€nm particle diameters. We also show efficient conversion of particle-phase organic carbon species to CO2 across the instrument\u27s platinum catalyst followed by a nondispersive infrared (NDIR) CO2 detector. However, the application of this method to the atmosphere presents a challenge due to the small signal above background at high ambient levels of common gas-phase carbon compounds (e.g., CO2). We show the Nr system is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation using single-component, laboratory-generated, Nr-containing particles below 2.5ĝ€μm in size. In addition we show agreement with mass measurements of an independently calibrated online particle-into-liquid sampler directly coupled to the electrospray ionization source of a quadrupole mass spectrometer (PILS-ESI/MS) sampling in the negative-ion mode. We obtain excellent correlations (R2ĝ€Combining double low line 0.99) of particle mass measured as Nr with PILS-ESI/MS measurements converted to the corresponding particle anion mass (e.g., nitrate, sulfate, and chloride). The Nr and PILS-ESI/MS are shown to agree to within ĝ1/4ĝ€6ĝ€% for particle mass loadings of up to 120ĝ€μgĝ€mĝ\u273. Consideration of all the sources of error in the PILS-ESI/MS technique yields an overall uncertainty of ±20ĝ€% for these single-component particle streams. These results demonstrate the Nr system is a reliable direct particle mass measurement technique that differs from other particle instrument calibration techniques that rely on knowledge of particle size, shape, density, and refractive index

    Structural and Electrical Parameters of ZnO Thin Films Grown by ALD with either Water or Ozone as Oxygen Precursors

    No full text
    Low temperature (at 100 °C and below) growth of ZnO thin films by atomic layer deposition (ALD) is demonstrated. Properties of the layers grown with two different oxygen reagents: ozone and water are compared. Diethylzinc (DEZ) was used as metal precursor. Electrical and structural properties of films obtained at several different growth temperatures, ranging from 50 °C to 250 °C were analyzed. It turned out that the film grown in the water-based process at 250 °C and all films grown with ozone have more ordered crystallographic structure with the privileged growth direction (001) perpendicular to the substrate than water-based samples grown in temperatures 100–200 °C. Higher free electron concentration at room temperature was observed for ozone-based samples grown at 100 °C and 150 °C in comparison to water-based samples obtained at the same growth temperature. Low value of resistivity in case of ozone-based samples grown at 100 °C is a promising result, however lower electron mobility requires further optimization

    Titanium Dioxide Thin Films Obtained by Atomic Layer Deposition Promotes Osteoblasts’ Viability and Differentiation Potential While Inhibiting Osteoclast Activity—Potential Application for Osteoporotic Bone Regeneration

    No full text
    Atomic layer deposition (ALD) technology has started to attract attention as an efficient method for obtaining bioactive, ultrathin oxide coatings. In this study, using ALD, we have created titanium dioxide (TiO2) layers. The coatings were characterised in terms of physicochemical and biological properties. The chemical composition of coatings, as well as thickness, roughness, wettability, was determined using XPS, XRD, XRR. Cytocompatibillity of ALD TiO2 coatings was accessed applying model of mouse pre-osteoblast cell line MC3T3-E1. The accumulation of transcripts essential for bone metabolism (both mRNA and miRNA) was determined using RT-qPCR. Obtained ALD TiO2 coatings were characterised as amorphous and homogeneous. Cytocompatibility of the layers was expressed by proper morphology and growth pattern of the osteoblasts, as well as their increased viability, proliferative and metabolic activity. Simultaneously, we observed decreased activity of osteoclasts. Obtained coatings promoted expression of Opn, Coll-1, miR-17 and miR-21 in MC3T3-E1 cells. The results are promising in terms of the potential application of TiO2 coatings obtained by ALD in the field of orthopaedics, especially in terms of metabolic- and age-related bone diseases, including osteoporosis

    Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    No full text
    Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%

    New generation of oxide-based nanoparticles for the applications in early cancer detection and diagnostics

    No full text
    Hereby the possible applications of oxide nanoparticles in the cancer diagnostics and therapy are presented. Cancer diseases are nowadays one of the most common causes of death in the highly-developed countries. Discussed will be the current clinical cancer detection methods with their shortcomings. The role of nanomedicine in cancer medicine and the potential applications of nanoparticles debated in the literature will be critically evaluated. In the second part, the most common methods for the nanoparticle synthesis will be discussed. Finally, the system for cancer detection based on the enhanced permeation-retention of multimodal high-k oxide nanoparticles doped with lanthanides will be proposed for both for themagnetic resonance imaging (non-gadolinium contrast agents) and for fluorescence guided biopsy and surgery

    Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

    No full text
    Zinc oxide nanopowders doped with 1–15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS) technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999%) and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD), helium pycnometry density, specific surface area (SSA), inductively coupled plasma optical emission spectrometry (ICP-OES), extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and with magnetometry using superconducting quantum interference device (SQUID). Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co–Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles
    corecore