2,399 research outputs found

    Finding Competitive Network Architectures Within a Day Using UCT

    Full text link
    The design of neural network architectures for a new data set is a laborious task which requires human deep learning expertise. In order to make deep learning available for a broader audience, automated methods for finding a neural network architecture are vital. Recently proposed methods can already achieve human expert level performances. However, these methods have run times of months or even years of GPU computing time, ignoring hardware constraints as faced by many researchers and companies. We propose the use of Monte Carlo planning in combination with two different UCT (upper confidence bound applied to trees) derivations to search for network architectures. We adapt the UCT algorithm to the needs of network architecture search by proposing two ways of sharing information between different branches of the search tree. In an empirical study we are able to demonstrate that this method is able to find competitive networks for MNIST, SVHN and CIFAR-10 in just a single GPU day. Extending the search time to five GPU days, we are able to outperform human architectures and our competitors which consider the same types of layers

    Didáctica de la estadística: modelos culturales en la enseñanza de la estadística

    Get PDF
    Este estudio trata acerca de una indagación para observar los modos culturales de la enseñanza de la estadística en contextos educativos. Se tomaron como muestra los diseños y planificaciones de profesores y diversos materiales educativos existentes en web y en foros, así como también las pautas de algunos ramos de estadística de algunas casas de estudio nacionales y extranjeras (españolas y Latinoamericanas) con el propósito de generar aprendizaje relativo al conocimiento estadístico en la formación docente
    corecore