1,209 research outputs found

    HE 0047-1756: A new gravitationally lensed double QSO

    Full text link
    The quasar HE 0047-1756, at z=1.67, is found to be split into two images 1.44" apart by an intervening galaxy acting as a gravitational lens. The flux ratio for the two components is roughly 3.5:1, depending slightly upon wavelength. The lensing galaxy is seen on images obtained at 800 nm and 2.1 \mu; there is also a nearby faint object which may be responsible for some shear. The spectra of the two quasar images are nearly identical, but the emission line ratio between the two components scale differently from the continuum. Moreover, the fainter component has a bluer continuum slope than the brighter one. We argue that these small differences are probably due to microlensing. There are hints of an Einstein ring emanating from the brighter image toward the fainter one.Comment: 4 pages, submitted to A&A Letter

    The Double Quasar HE1104-1805: a case study for time delay determination with poorly sampled lightcurves

    Get PDF
    We present a new determination of the time delay of the gravitational lens system HE1104-1805 ('Double Hamburger') based on a previously unpublished dataset. We argue that the previously published value of dt_(A-B)=0.73 years was affected by a bias of the employed method. We determine a new value of dt_(A-B)=0.85+/-0.05 years (2 sigma confidence level), using six different techniques based on non interpolation methods in the time domain. The result demonstrates that even in the case of poorly sampled lightcurves, useful information can be obtained with regard to the time delay. The error estimates were calculated through Monte Carlo simulations. With two already existing models for the lens and using its recently determined redshift, we infer a range of values of the Hubble parameter: Ho=48+/-4 km/s Mpc^-1 (2 sigma) for a singular isothermal ellipsoid (SIE) and Ho=62+/-4 km/s Mpc^-1 (2 sigma) for a constant mass-to-light ratio plus shear model (M/L+gamma). The possibly much larger errors due to systematic uncertainties in modeling the lens potential are not included in this error estimate.Comment: 11 pages, 15 figures, accepted by Astronomy and Astrophysic

    Accounting for selection effects in the BH-bulge relations: No evidence for cosmological evolution

    Full text link
    The redshift evolution of the black hole - bulge relations is an essential observational constraint for models of black hole - galaxy coevolution. In addition to the observational challenges for these studies, conclusions are complicated by the influence of selection effects. We demonstrate that there is presently no statistical significant evidence for cosmological evolution in the black hole-bulge relations, once these selection effects are taken into account and corrected for. We present a fitting method, based on the bivariate distribution of black hole mass and galaxy property, that accounts for the selection function in the fitting and is therefore able to recover the intrinsic black hole - bulge relation unbiased. While prior knowledge is restricted to a minimum, we at least require knowledge of either the sample selection function and the mass dependence of the active fraction, or the spheroid distribution function and the intrinsic scatter in the black hole - bulge relation. We employed our fitting routine to existing studies of the black hole-bulge relation at z~1.5 and z~6, using our current best knowledge of the distribution functions. There is no statistical significant evidence for positive evolution in the MBH-M* ratio out to z~2. At z~6 the current constraints are less strong, but we demonstrate that the large observed apparent offset from the local black hole-bulge relation at z~6 is fully consistent with no intrinsic offset. The method outlined here provides a tool to obtain more reliable constraints on black hole - galaxy co-evolution in the future.Comment: 13 pages, 8 figures, published in MNRA

    Low redshift AGN in the Hamburg/ESO Survey: II. The active black hole mass function and the distribution function of Eddington ratios

    Full text link
    We estimated black hole masses and Eddington ratios for a well defined sample of local (z<0.3) broad line AGN from the Hamburg/ESO Survey (HES), based on the Hbeta line and standard recipes assuming virial equilibrium for the broad line region. The sample represents the low-redshift AGN population over a wide range of luminosities, from Seyfert 1 galaxies to luminous quasars. From the distribution of black hole masses we derived the active black hole mass function (BHMF) and the Eddington ratio distribution function (ERDF) in the local universe, exploiting the fact that the HES has a well-defined selection function. While the directly determined ERDF turns over around L/L_Edd ~ 0.1, similar to what has been seen in previous analyses, we argue that this is an artefact of the sample selection. We employed a maximum likelihood approach to estimate the intrinsic distribution functions of black hole masses and Eddington ratios simultaneously in an unbiased way, taking the sample selection function fully into account. The resulting ERDF is well described by a Schechter function, with evidence for a steady increase towards lower Eddington ratios, qualitatively similar to what has been found for type~2 AGN from the SDSS. Comparing our best-fit active BHMF with the mass function of inactive black holes we obtained an estimate of the fraction of active black holes, i.e. an estimate of the AGN duty cycle. The active fraction decreases strongly with increasing black hole mass. A comparison with the BHMF at higher redshifts also indicates that, at the high mass end, black holes are now in a less active stage than at earlier cosmic epochs. Our results support the notion of anti-hierarchical growth of black holes, and are consistent with a picture where the most massive black holes grew at early cosmic times, whereas at present mainly smaller mass black holes accrete at a significant rate.Comment: 19 pages, 15 figures, accepted for publication in A&

    Integral-field spectroscopy of the quadruple QSO HE 0435-1223: Evidence for microlensing

    Full text link
    We present the first spatially resolved spectroscopic observations of the recently discovered quadruple QSO and gravitational lens HE0435-1223. Using the Potsdam Multi-Aperture Spectrophotometer (PMAS), we show that all four QSO components have very similar but not identical spectra. In particular, the spectral slopes of components A, B, and D are indistinguishable, implying that extinction due to dust plays no major role in the lensing galaxy. While also the emission line profiles are identical within the error bars, as expected from lensing, the equivalent widths show significant differences between components. Most likely, microlensing is responsible for this phenomenon. This is also consistent with the fact that component D, which shows the highest relative continuum level, has brightened by 0.07 mag since Dec 2001. We find that the emission line flux ratios between the components are in better agreement with simple lens models than broad band or continuum measurements, but that the discrepancies between model and data are still unacceptably large. Finally, we present a detection of the lensing galaxy, although this is close to the limits of the data. Comparing with a model galaxy spectrum, we obtain a redshift estimate of z_lens=0.44+-0.02.Comment: 9 pages, 7 figures, accepted for publication in A&

    LSDCat: Detection and cataloguing of emission-line sources in integral-field spectroscopy datacubes

    Full text link
    We present a robust, efficient, and user-friendly algorithm for detecting faint emission-line sources in large integral-field spectroscopic datacubes together with the public release of the software package LSDCat (Line Source Detection and Cataloguing). LSDCat uses a 3-dimensional matched filter approach, combined with thresholding in signal-to-noise, to build a catalogue of individual line detections. In a second pass, the detected lines are grouped into distinct objects, and positions, spatial extents, and fluxes of the detected lines are determined. LSDCat requires only a small number of input parameters, and we provide guidelines for choosing appropriate values. The software is coded in Python and capable to process very large datacubes in a short time. We verify the implementation with a source insertion and recovery experiment utilising a real datacube taken with the MUSE instrument at the ESO Very Large Telescope.Comment: 14 pages. Accepted for publication in Astronomy & Astrophysics. The LSDCat software is available at https://bitbucket.org/Knusper2000/lsdcat, v2 corrected typos and language editin

    Decomposition of AGN host galaxy images

    Full text link
    We describe an algorithm to decompose deep images of Active Galactic Nuclei into host galaxy and nuclear components. Currently supported are three galaxy models: A de-Vaucouleurs spheroidal, an exponential disc, and a two-component disc+bulge model. Key features of the method are: (semi-)analytic representation of a possibly spatially variable point-spread function; full two-dimensional convolution of the model galaxy using gradient-controlled adaptive subpixelling; multiple iteration scheme. The code is computationally efficient and versatile for a wide range of applications. The quantitative performance is measured by analysing simulated imaging data. We also present examples of the application of the method to small test samples of nearby Seyfert 1 galaxies and quasars at redshifts z < 0.35.Comment: 12 pages, 15 figures, accepted for publication in MNRA

    Carbon-Enhanced Hyper-metal-poor Stars and the Stellar IMF at Low Metallicity

    Full text link
    The two known ``hyper-metal-poor'' (HMP) stars, HE0107-5240 and HE1327-2326, have extremely high enhancements of the light elements C, N, and O relative to Fe and appear to represent a statistically significant excess population relative to the halo metallicity distribution extrapolated from [Fe/H] > -3. This study weighs the available evidence for and against three hypothetical origins for these stars: (1) that they formed from gas enriched by a primordial ``faint supernova'', (2) that they formed from gas enriched by core-collapse supernovae and C-rich gas ejected in rotation-driven winds from massive stars, and (3) that they formed as the low-mass secondaries in binary systems at Z ~ 10^{-5.5} Zsun and acquired their light-element enhancements from an intermediate-mass companion as it passed through an AGB phase. The observations interpreted here, especially the depletion of lithium seen in HE1327-2326, favor the binary mass-transfer hypothesis. If HE0107-5240 and HE1327-2326 formed in binary systems, the statistically significant absence of isolated and/or C-normal stars at similar [Fe/H] implies that low-mass stars could form at that metallicity, but that masses M ~< 1.4 Msun were disfavored in the IMF. This result is also explained if the abundance-derived top-heavy IMF for primordial stars persists to [Fe/H] ~ -5.5. This finding indicates that low-mass star formation was possible at extremely low metallicity, and that the typical stellar mass may have had a complex dependence on metallicity rather than a sharp transition driven solely by gas cooling.Comment: 11 pages emulateapj text including three figures, accepted for publication in ApJ v666 (Sept 2007). A companion paper to 0706.290

    Resolving stellar populations with crowded field 3D spectroscopy

    Full text link
    (Abridged) We describe a new method to extract spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm are: (1) We assume that a high-fidelity input source catalogue already exists and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of ~1 significantly detected star per resolution element. We close with an outlook by applying our method to a simulated globular cluster observation with the upcoming MUSE instrument at the ESO-VLT.Comment: accepted for publication in A&A, 19 pages, 19 figure
    • …
    corecore