138 research outputs found
Exact Minimum Eigenvalue Distribution of an Entangled Random Pure State
A recent conjecture regarding the average of the minimum eigenvalue of the
reduced density matrix of a random complex state is proved. In fact, the full
distribution of the minimum eigenvalue is derived exactly for both the cases of
a random real and a random complex state. Our results are relevant to the
entanglement properties of eigenvectors of the orthogonal and unitary ensembles
of random matrix theory and quantum chaotic systems. They also provide a rare
exactly solvable case for the distribution of the minimum of a set of N {\em
strongly correlated} random variables for all values of N (and not just for
large N).Comment: 13 pages, 2 figures included; typos corrected; to appear in J. Stat.
Phy
Perspective: Dietary Biomarkers of Intake and Exposure - Exploration with Omics Approaches
While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research
HMDB 5.0: the Human Metabolome Database for 2022
The Human Metabolome Database or HMDB (https://hmdb.ca) has been providing comprehensive reference information about human metabolites and their associated biological, physiological and chemical properties since 2007. Over the past 15 years, the HMDB has grown and evolved significantly to meet the needs of the metabolomics community and respond to continuing changes in internet and computing technology. This year's update, HMDB 5.0, brings a number of important improvements and upgrades to the database. These should make the HMDB more useful and more appealing to a larger cross-section of users. In particular, these improvements include: (i) a significant increase in the number of metabolite entries (from 114 100 to 217 920 compounds); (ii) enhancements to the quality and depth of metabolite descriptions; (iii) the addition of new structure, spectral and pathway visualization tools; (iv) the inclusion of many new and much more accurately predicted spectral data sets, including predicted NMR spectra, more accurately predicted MS spectra, predicted retention indices and predicted collision cross section data and (v) enhancements to the HMDB's search functions to facilitate better compound identification. Many other minor improvements and updates to the content, the interface, and general performance of the HMDB website have also been made. Overall, we believe these upgrades and updates should greatly enhance the HMDB's ease of use and its potential applications not only in human metabolomics but also in exposomics, lipidomics, nutritional science, biochemistry and clinical chemistry.Analytical BioScience
Beam spin asymmetry measurements of deeply virtual π0 production with CLAS12
The new experimental measurements of beam spin asymmetry were performed for the deeply virtual exclusive pi0 production in a wide kinematic region with the photon virtualities Q2 up to 6.6 GeV2 and the Bjorken scaling variable xB in the valence regime. The data were collected by the CEBAF Large Acceptance Spectrometer (CLAS12) at Jefferson Lab with longitudinally polarized 10.6 GeV electrons scattered on an unpolarized liquid-hydrogen target. Sizable asymmetry values indicate a substantial contribution from transverse virtual photon amplitudes to the polarized structure functions. The interpretation of these measurements in terms of the Generalized Parton Distributions (GPDs) demonstrates their sensitivity to the chiral-odd GPD ET, which contains information on quark transverse spin densities in unpolarized and polarized nucleons and provides access to the nucleon's transverse anomalous magnetic moment. Additionally, the data were compared to a theoretical model based on a Regge formalism that was extended to the high photon virtualities
Interpreting protein chemical shift data
A review of the Progress in Nuclear Magnetic Resonance Spectroscopy journal discusses the roles that chemical shifts can play in understanding and interpreting protein structure and protein dynamics. The focus of the review is limited primarily to the interpretation of reported peptide and protein chemical shifts, which are diamagnetic and isotropic in character. It is expected that kind of review will help increase the awareness of chemical shifts in the NMR community and that it will clarify certain issues pertaining to chemical shifts in biomolecular NMR. It is expected that it will offer new insights into how chemical shifts can be used in protein NMR and give greater confidence to those spectroscopists who are specifically 'NOE-centric' or those who are relatively new to the field to start routinely using chemical shifts in analyzing their protein structures.Peer reviewed: YesNRC publication: Ye
- …