4,219 research outputs found

    PREFERENCES OF MID-ATLANTIC SEAFOOD BUYERS TOWARD FARM-RAISED HYBRID STRIPED BASS

    Get PDF
    A market survey of three mid-Atlantic food-fish market levels was conducted to provide information on finfish buyers' market characteristics, finfish attribute preferences, and buyers' attitudes toward farm-raised hybrid striped bass. Results showed that most firms are located in the suburban areas, and they purchased their fish from producers and wholesalers. Quality was rated as the most important finfish attribute; and, aside from restaurants, buyers are generally familiar with hybrid striped bass and indicated that it could easily be substituted for wild striped bass. Most buyers were either not sure or feel hybrid striped bass could not substitute for other fish species although they all expressed a willingness to offer farm-raised hybrid striped bass. Finally, the possibility of fish farmers selling directly to all market levels has great potential if the fish size is around two to three pounds and the form is whole for the wholesaler and retailer and fillet for the restaurants.Consumer/Household Economics,

    Magnetotransport in the CeIrIn5{_5} system: The influence of antiferromagnetic fluctuations

    Get PDF
    We present an overview of magnetotransport measurements on the heavy-fermion superconductor CeIrIn5_5. Sensitive measurements of the Hall effect and magnetoresistance (MR) are used to elucidate the low temperature phase diagram of this system. The normal-state magnetotransport is highly anomalous, and experimental signatures of a pseudogap-like precursor state to superconductivity as well as evidence for two distinct scattering times governing the Hall effect and the MR are observed. Our observations point out the influence of antiferromagnetic fluctuations on the magnetotransport in this class of materials. The implications of these findings, both in the context of unconventional superconductivity in heavy-fermion systems as well as in relation to the high temperature superconducting cuprates are discussed

    The influence of oscillations on energy estimates for damped wave models with time-dependent propagation speed and dissipation

    Full text link
    The aim of this paper is to derive higher order energy estimates for solutions to the Cauchy problem for damped wave models with time-dependent propagation speed and dissipation. The model of interest is \begin{equation*} u_{tt}-\lambda^2(t)\omega^2(t)\Delta u +\rho(t)\omega(t)u_t=0, \quad u(0,x)=u_0(x), \,\, u_t(0,x)=u_1(x). \end{equation*} The coefficients λ=λ(t)\lambda=\lambda(t) and ρ=ρ(t)\rho=\rho(t) are shape functions and ω=ω(t)\omega=\omega(t) is an oscillating function. If ω(t)≡1\omega(t)\equiv1 and ρ(t)ut\rho(t)u_t is an "effective" dissipation term, then L2−L2L^2-L^2 energy estimates are proved in [2]. In contrast, the main goal of the present paper is to generalize the previous results to coefficients including an oscillating function in the time-dependent coefficients. We will explain how the interplay between the shape functions and oscillating behavior of the coefficient will influence energy estimates.Comment: 37 pages, 2 figure

    Hall effect in heavy-fermion metals

    Full text link
    The heavy fermion systems present a unique platform in which strong electronic correlations give rise to a host of novel, and often competing, electronic and magnetic ground states. Amongst a number of potential experimental tools at our disposal, measurements of the Hall effect have emerged as a particularly important one in discerning the nature and evolution of the Fermi surfaces of these enigmatic metals. In this article, we present a comprehensive review of Hall effect measurements in the heavy-fermion materials, and examine the success it has had in contributing to our current understanding of strongly correlated matter. Particular emphasis is placed on its utility in the investigation of quantum critical phenomena which are thought to drive many of the exotic electronic ground states in these systems. This is achieved by the description of measurements of the Hall effect across the putative zero-temperature instability in the archetypal heavy-fermion metal YbRh2_2Si2_2. Using the CeMMIn5_5 (with M=M = Co, Ir) family of systems as a paradigm, the influence of (antiferro-)magnetic fluctuations on the Hall effect is also illustrated. This is compared to prior Hall effect measurements in the cuprates and other strongly correlated systems to emphasize on the generality of the unusual magnetotransport in materials with non-Fermi liquid behavior.Comment: manuscript accepted in Adv. Phy

    Characterization of rectangular copper wire forming properties and derivation of control concepts for the kinematic bending of hairpin coils

    Get PDF
    As a result of the continuously growing demand for electric vehicles, innovative production technologies must be developed to fulfill the high automotive requirements for productivity and quality in the manufacturing of electric drives. By providing advantages regarding the degree of automation, the productivity as well as the attainable filling factors in comparison to established round wire winding technologies, the hairpin technology shows a high potential for meeting the requested specifications but also technological weaknesses, especially concerning the process reliability. The referring production process of stators is normally based on the spatial forming of open, hairpin-shaped coils of enameled flat copper wire as well as subsequent joining and contacting processes. Consequently, the hairpin coils represent the elementary components of the process chain and can be either shaped by robust tool-bound or flexible kinematic bending processes that enable the shaping of different contours at moderate tool costs. In this paper, the essential mechanical forming and product properties of flat copper wires with different dimensions and insulation coatings are characterized by means of uniaxial tensile tests as well as metallographic analyses of the material structure, at first. Subsequently, the identified forming properties are correlated to the applied manufacturing processes drawing, rolling as well as continuous extruding and considered as limits of possible material variations. To evaluate the effect of fluctuating wire qualities on the robustness of kinematic hairpin bending processes, the fabrication tolerances are analyzed by finite element simulations, using the example of elementary kinematic bending operations and modeled changes of the material properties. Based on the knowledge of material-based process tolerances, different control concepts for the kinematic bending of hairpin coils are derived and compared based on technical as well as economic aspects

    Hybridization gap and Fano resonance in SmB6{_6}

    Full text link
    We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the "Kondo insulator" SmB6_6. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstructed, Sm- or B-terminated surfaces were found. On the smallest patches, clear indications for the hybridization gap and inter-multiplet transitions were observed. On non-reconstructed surface areas large enough for coherent co-tunneling we were able to observe clear-cut Fano resonances. Our locally resolved STS indicated considerable finite conductance on all surfaces independent of their structure.Comment: 5 pages, 4 figure

    Homologous recombination in Leishmania enriettii.

    Full text link

    New supersymmetric quartet of nuclei in the A=190 mass region

    Get PDF
    We present evidence for a new supersymmetric quartet in the A=190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleaus 194 Ir strongly suggests the existence of a new supersymmetric quartet, consisting of the 192,193 Os and 193,194 Ir nuclei. We make explicit predictions for the odd-neutron nucleus 193 Os, and suggest that its spectroscopic properties be measured in dedicated experiments.Comment: 5 pages, 4 figures, updated figures and revised text, Physical Review C, Rapid Communication, in pres

    A precursor state to unconventional superconductivity in CeIrIn5{_5}

    Full text link
    We present sensitive measurements of the Hall effect and magnetoresistance in CeIrIn5{_5} down to temperatures of 50 mK and magnetic fields up to 15 T. The presence of a low temperature coherent Kondo state is established. Deviations from Kohler's rule and a quadratic temperature dependence of the cotangent of the Hall angle are reminiscent of properties observed in the high temperature superconducting cuprates. The most striking observation pertains to the presence of a \textit{precursor} state--characterized by a change in the Hall mobility--that appears to precede the superconductivity in this material, in similarity to the pseudogap in the cuprate high TcT_c superconductors.Comment: 4 figure
    • 

    corecore