3 research outputs found
Recommended from our members
Rapid, Field-Deployable Method for Genotyping and Discovery of Single-Nucleotide Polymorphisms Associated with Drug Resistance in Plasmodium falciparum
Despite efforts to reduce malaria morbidity and mortality, drug-resistant parasites continue to evade control strategies. Recently, emphasis has shifted away from control and toward regional elimination and global eradication of malaria. Such a campaign requires tools to monitor genetic changes in the parasite that could compromise the effectiveness of antimalarial drugs and undermine eradication programs. These tools must be fast, sensitive, unambiguous, and cost-effective to offer real-time reports of parasite drug susceptibility status across the globe. We have developed and validated a set of genotyping assays using high-resolution melting (HRM) analysis to detect molecular biomarkers associated with drug resistance across six genes in Plasmodium falciparum. We improved on existing technical approaches by developing refinements and extensions of HRM, including the use of blocked probes (LunaProbes) and the mutant allele amplification bias (MAAB) technique. To validate the sensitivity and accuracy of our assays, we compared our findings to sequencing results in both culture-adapted lines and clinical isolates from Senegal. We demonstrate that our assays (i) identify both known and novel polymorphisms, (ii) detect multiple genotypes indicative of mixed infections, and (iii) distinguish between variants when multiple copies of a locus are present. These rapid and inexpensive assays can track drug resistance and detect emerging mutations in targeted genetic loci in P. falciparum. They pro- vide tools for monitoring molecular changes associated with changes in drug response across populations and for determining whether parasites present after drug treatment are the result of recrudescence or reinfection in clinical settings.Organismic and Evolutionary Biolog
Recommended from our members
Identification and Characterization of Small Molecule Inhibitors of a Class I Histone Deacetylase from Plasmodium falciparum
A library of approximately 2000 small molecules biased toward inhibition of histone deacetylases was assayed for antimalarial activity in a high-throughput P. falciparum viability assay. Active compounds were cross-analyzed for induction of histone hyperacetylation in a human myeloma cell line to identify HDAC inhibitors with selectivity for P. falciparum over the human host. To verify on-target selectivity, pfHDAC-1 was expressed and purified and a biochemical assay for pfHDAC-1 activity was established.Chemistry and Chemical Biolog
Recommended from our members
Genetic Surveillance Detects Both Clonal and Epidemic Transmission of Malaria following Enhanced Intervention in Senegal
Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign.Human Evolutionary BiologyOrganismic and Evolutionary Biolog