4 research outputs found
Identification and mapping real-world data sources for heart failure, acute coronary syndrome, and atrial fibrillation
BACKGROUND: Transparent and robust real-world evidence sources are increasingly important for global health, including cardiovascular diseases. We aimed to identify global real-world data (RWD) sources for heart failure (HF), acute coronary syndrome (ACS), and atrial fibrillation (AF). METHODS: We conducted a systematic review of publications with RWD pertaining to HF, ACS, and AF (2010-2018), generating a list of unique data sources. Metadata were extracted based on the source type (e.g. electronic health records, genomics, clinical data), study design, population size, clinical characteristics, follow-up duration, outcomes, and assessment of data availability for future studies and linkage. RESULTS: Overall, 11,889 publications were retrieved for HF, 10,729 for ACS, and 6,262 for AF. From these, 322 (HF), 287 (ACS), and 220 (AF) data sources were selected for detailed review. Majority of data sources had near complete data on demographic variables (HF: 94%, ACS: 99%, and AF: 100%) and considerable data on comorbidities (HF: 77%, ACS: 93%, and AF: 97%). The least reported data categories were drug codes (HF, ACS, and AF: 10%) and caregiver involvement (HF: 6%, ACS: 1%, and AF: 1%). Only a minority of data sources provided information on access to data for other researchers (11%) or whether data could be linked to other data sources to maximize clinical impact (20%). The list and metadata for the RWD sources are publicly available at www.escardio.org/bigdata. CONCLUSIONS: This review has created a comprehensive resource of cardiovascular data sources, providing new avenues to improve future real-world research and to achieve better patient outcomes
Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions
BackgroundTargeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.ResultsAll panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.ConclusionThis comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.Peer reviewe