124 research outputs found
Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations
The snow cover extent is an important factor for the structure and composition of arctic and alpine tundra communities. Over the last few decades, snowmelt in many arctic and alpine regions has advanced, causing the growing season to start earlier and last longer. In a field experiment in subarctic tundra in Interior Alaska, I manipulated the timing of snowmelt and measured the response in mortality, phenology, growth, and reproduction of the eight dominant plant species. I then tested whether the phenological development of these species was controlled by snowmelt date or by temperature (in particular growing degree days, GDD). In order to expand our understanding of plant sensitivity to snowmelt timing, I explored whether the response patterns can be generalized with regard to the temporal niche of each species. Differences in the phenology between treatments were only found for the first stages of the phenological development (=phenophases). The earlier the temporal niche (i.e., the sooner after snowmelt a species develops) the more its phenology was sensitive to snowmelt. Later phenophases were mostly controlled by GDD, especially in late-developing species. In no species did an earlier snowmelt and a longer growing season directly enhance plant fitness or fecundity, in spite of the changes in the timing of plant development. In conclusion, the temporal niche of a species' phenological development could be a predictor of its response to snowmelt timing. However, only the first phenophases were susceptible to changes in snowmelt, and no short-term effects on plant fitness were foun
Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing
Snow is an important environmental factor in alpine ecosystems, which influences plant phenology, growth and species composition in various ways. With current climate warming, the snow-to-rain ratio is decreasing, and the timing of snowmelt advancing. In a 2-year field experiment above treeline in the Swiss Alps, we investigated how a substantial decrease in snow depth and an earlier snowmelt affect plant phenology, growth, and reproduction of the four most abundant dwarf-shrub species in an alpine tundra community. By advancing the timing when plants started their growing season and thus lost their winter frost hardiness, earlier snowmelt also changed the number of low-temperature events they experienced while frost sensitive. This seemed to outweigh the positive effects of a longer growing season and hence, aboveground growth was reduced after advanced snowmelt in three of the four species studied. Only Loiseleuria procumbens, a specialist of wind exposed sites with little snow, benefited from an advanced snowmelt. We conclude that changes in the snow cover can have a wide range of species-specific effects on alpine tundra plants. Thus, changes in winter climate and snow cover characteristics should be taken into account when predicting climate change effects on alpine ecosystem
Snow cover, freeze-thaw, and the retention of nutrients in an oceanic mountain ecosystem
Peer reviewe
Resampling alpine herbarium records reveals changes in plant traits over space and time
Acknowledgements This project would not have been possible without the support and enthusiasm of the staff at herbaria around Switzerland (herbaria of University and ETH Zurich, Universities of Basel and Neuchatel, and Museum of Natural History Chur), in particular Hugo Berger, for which we would like to say thanks. We would also like to thank Rachel Imboden, Samuel Stolz, Aino Kulonen, Adrien Gaudard, Louis Quéno, Amy MacFarlane, Ueli Schmid, Lorna Holl and Pirmin Ebner for their invaluable help in the field and in the labPeer reviewedPublisher PD
Go or grow? Feedbacks between moving slopes and shifting plants in high mountain environments
High mountains are climate change hotspots. Quickly rising temperatures trigger vegetation shifts such as upslope migration, possibly threatening mountain biodiversity. At the same time, mountain slopes are becoming increasingly unstable due to degrading permafrost and changing rain and snowfall regimes, which favour slope movements such as rockfall and debris flows. Slope movements can limit plant colonization, while, at the same time, plant colonization can stabilize moving slopes. Thus, we here propose that response of high mountain environments to climate change depends on a ‘biogeomorphic balance’ between slope movement intensity and the trait-dependent ability of mountain plants to survive and stabilize slopes. We envision three possible scenarios of biogeomorphic balance: (1) Intensifying slope movements limit vegetation shifts and thus amplify instability. (2) Shifting ecosystem engineer species reduce slope movement and facilitate shifts for less movement-adapted species. (3) Trees and tall shrubs shifting on stable slopes limit slope instability but decrease biodiversity. Previous geomorphic, ecological and palaeoecological studies support all three scenarios. Given differences in ecologic and geomorphic response rates to climate change, as well as high environmental heterogeneity and elevational gradients in mountain environments, we posit that future biogeomorphic balances will be variable and heterogeneous in time and space. To further unravel future biogeomorphic balances, we propose three new research directions for joint research of mountain geomorphologists and ecologists, using advancing field measurement, remote sensing and modelling techniques. Recognizing high mountains as ‘biogeomorphic ecosystems’ will help to better safeguard mountain infrastructure, lives and livelihoods of millions of people around the world
Dimension and impact of biases in funding for species and habitat conservation
Taxonomic and aesthetic biases permeate biodiversity conservation. We used the LIFE program-the European Union's funding scheme for the environment-to explore the economic dimension of biases in species-and habitat-level conservation. Between 1992 and 2020, animal species received three times more funding than plants. Within plants, species at northern latitudes, with broader ranges, and with blue/purple flowers received more funds regardless of their extinction risk. Conversely, species online popularity was only weakly positively associated with conservation expenditure. At the habitat-level, we found no relationship between expenditure and conservation status of the habitat. Our results can inform ways forward to achieve conservation goals that are comprehensive, sustainable, and cost-effective.Peer reviewe
Boost in Visitor Numbers Post COVID-19 Shutdown: Consequences for an Alpine National Park
The coronavirus disease 2019 (COVID-19) pandemic changed recreation patterns worldwide. Increases in protected areas' visitor numbers were reported along with associated challenges. Changes in visitor numbers, composition, and motivation remain mostly unrecorded due to a lack of baseline records for comparison. We aimed to fill this gap with a study in the Swiss National Park (SNP), an International Union for Conservation of Nature (IUCN) strict nature reserve in the European Alps, where visitor numbers strongly increased in 2020 and 2021 compared to previous years. In summer 2020, we repeated a visitor survey previously conducted in 2006 and 2012, complemented by assessments of COVID-19-related motivations. To deepen our understanding of the COVID-19 context, we conducted semistructured interviews with SNP visitors. In general, COVID-19-related factors were a strong driver of increased visitor numbers. A fifth of survey respondents indicated that they would not have visited the SNP but for the pandemic, with most of them being first-time or infrequent visitors. Furthermore, our data showed that more young, domestic, and less experienced visitors came to the park. We discuss impacts and implications for practitioners and researchers (ie the need to better sensitize newcomers to environmental issues) and argue that our study holds insights for park managers worldwide
- …