169 research outputs found
Recommended from our members
Notations and conventions in molecular spectroscopy: part 1. General spectroscopic notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part I in a series, establishes the notations and conventions used for
general spectroscopic notations and deals with quantum mechanics, quantum numbers
(vibrational states, angular momentum and energy levels), spectroscopic transitions, and
miscellaneous notations (e.g. spectroscopic terms). Further parts will follow, dealing inter
alia with symmetry notation, permutation and permutation-inversion symmetry notation,
vibration-rotation spectroscopy and electronic spectroscopy
Recommended from our members
Notations and conventions in molecular spectroscopy: part 2. Symmetry notation
The field of Molecular Spectroscopy was surveyed in order to determine a set of
conventions and symbols which are in common use in the spectroscopic literature. This
document, which is Part 2 in a series, establishes the notations and conventions used for the
description of symmetry in rigid molecules, using the Schoenflies notation. It deals firstly
with the symmetry operators of the molecular point groups (also drawing attention to the
difference between symmetry operators and elements). The conventions and notations of the
molecular point groups are then established, followed by those of the representations of these
groups as used in molecular spectroscopy. Further parts will follow, dealing inter alia with
permutation and permutation-inversion symmetry notation, vibration-rotation spectroscopy
and electronic spectroscopy
Rotational spectra of isotopic species of methyl cyanide, CHCN, in their ground vibrational states up to terahertz frequencies
Methyl cyanide is an important trace molecule in star-forming regions. It is
one of the more common molecules used to derive kinetic temperatures in such
sources. As preparatory work for Herschel, SOFIA, and in particular ALMA we
want to improve the rest frequencies of the main as well as minor isotopologs
of methyl cyanide. The laboratory rotational spectrum of methyl cyanide in
natural isotopic composition has been recorded up to 1.63 THz. Transitions with
good signal-to-noise ratio could be identified for CHCN, CHCN,
CHCN, CHCN, CHDCN, and CHCN in their
ground vibrational states up to about 1.2 THz. The main isotopic species could
be identified even in the highest frequency spectral recordings around 1.6 THz.
The highest quantum numbers included in the fit are 64 for
CHCN and 89 for the main isotopic species. Greatly improved
spectroscopic parameters have been obtained by fitting the present data
together with previously reported transition frequencies. The present data will
be helpful to identify isotopologs of methyl cyanide in the higher frequency
bands of instruments such as the recently launched Herschel satellite, the
upcoming airplane mission SOFIA or the radio telescope array ALMA.Comment: 13 pages, 2 figures, article appeared; CDMS links update
The Distribution of Water Emission in M17SW
We present a 17-point map of the M17SW cloud core in the 1_{10}-1_{01}
transition of ortho-water at 557 GHz obtained with the Submillimeter Wave
Astronomy Satellite. Water emission was detected in 11 of the 17 observed
positions. The line widths of the water emission vary between 4 and 9 km
s^{-1}, and are similar to other emission lines that arise in the M17SW core. A
direct comparison is made between the spatial extent of the water emission and
the ^{13}CO J = 5\to4 emission; the good agreement suggests that the water
emission arises in the same warm, dense gas as the ^{13}CO emission. A spectrum
of the H_2^{18}O line was also obtained at the center position of the cloud
core, but no emission was detected. We estimate that the average abundance of
ortho-water relative to H_2 within the M17 dense core is approximately
1x10^{-9}, 30 times smaller than the average for the Orion core. Toward the H
II region/molecular cloud interface in M17SW the ortho-water abundance may be
about 5 times larger than in the dense core.Comment: 4 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty
(included), and apjfonts.sty (included
Water Abundance in Molecular Cloud Cores
We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the
1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud
cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL
2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and
B335. We also present a small map of the water emission in S140. Observations
of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission
was detected. The abundance of ortho-water relative to H_2 in the giant
molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five
of the cloud cores in our sample have previous water detections; however, in
all cases the emission is thought to arise from hot cores with small angular
extents. The water abundance estimated for the hot core gas is at least 100
times larger than in the gas probed by SWAS. The most stringent upper limit on
the ortho-water abundance in dark clouds is provided in TMC-1, where the
3-sigma upper limit on the ortho-water fractional abundance is 7x10^{-8}.Comment: 5 pages, 3 Postscript figures, uses aastex.cls, emulateapj5.sty
(included), and apjfonts.sty (included
A Spectral Line Survey of Selected 3 mm Bands Toward Sagittarius B2(N-LMH) Using the NRAO 12 Meter Radio Telescope and the BIMA Array I. The Observational Data
We have initiated a spectral line survey, at a wavelength of 3 millimeters,
toward the hot molecular core Sagittarius B2(N-LMH). This is the first spectral
line survey of the Sgr B2(N) region utilizing data from both an interferometer
(BIMA Array) and a single-element radio telescope (NRAO 12 meter). In this
survey, covering 3.6 GHz in bandwidth, we detected 218 lines (97 identified
molecular transitions, 1 recombination line, and 120 unidentified transitions).
This yields a spectral line density (lines per 100 MHz) of 6.06, which is much
larger than any previous 3 mm line survey. We also present maps from the BIMA
Array that indicate that most highly saturated species (3 or more H atoms) are
products of grain chemistry or warm gas phase chemistry. Due to the nature of
this survey we are able to probe each spectral line on multiple spatial scales,
yielding information that could not be obtained by either instrument alone.Comment: 35 pages, 15 figures, to be published in The Astrophysical Journa
Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser
Gisbert Winnewisser's astronomical career was practically coextensive with
the whole development of molecular radio astronomy. Here I would like to pick
out a few of his many contributions, which I, personally, find particularly
interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter
Astronomy Group. To appear in the Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies"
eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer:
Berlin
Observing a column-dependent zeta in dense interstellar sources: the case of the Horsehead Nebula
Context: Observations of small carbon-bearing molecules such as CCH, C4H,
c-C3H2, and HCO in the Horsehead Nebula have shown these species to have higher
abundances towards the edge of the source than towards the center.
Aims: Given the determination of a wide range of values for zeta (s-1), the
total ionization rate of hydrogen atoms, and the proposal of a column-dependent
zeta(N_H), where N_H is the total column of hydrogen nuclei, we desire to
determine if the effects of zeta(N_H) in a single object with spatial variation
can be observable. We chose the Horsehead Nebula because of its geometry and
high density.
Method: We model the Horsehead Nebula as a near edge-on photon dominated
region (PDR), using several choices for zeta, both constant and as a function
of column. The column-dependent zeta functions are determined by a Monte Carlo
model of cosmic ray penetration, using a steep power-law spectrum and
accounting for ionization and magnetic field effects. We consider a case with
low-metal elemental abundances as well as a sulfur-rich case.
Results: We show that use of a column-dependent zeta(N_H) of 5(-15) s-1 at
the surface and 7.5(-16) s-1 at Av = 10 on balance improves agreement between
measured and theoretical molecular abundances, compared with constant values of
zeta.Comment: 12 pages, 6 figures, 5 tables, accepted in A&
Spatial distribution of far-infrared rotationally excited CH<sup>+</sup> and OH emission lines in the Orion Bar photodissociation region
Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500−1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation.Aims. Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms.Methods. We present spatially sampled maps of the CH+ J = 3–2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+ , O and H2, and tracers of warm and dense gas (high-
J CO). We assess the spatial variation of the CH+ J = 2–1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations.Results. The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides with a bright young object, proplyd 244–440, which shows that OH can be an excellent tracer of UV-irradiated dense gas.Conclusions. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J = 3–2 excitation processes. The excitation of the OH Λ doublet at 84 μm is mainly sensitive to the temperature and density
TIMASSS: The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey. I. Observations, calibration and analysis of the line kinematics
While unbiased surveys observable from ground-based telescopes have
previously been obtained towards several high mass protostars, very little
exists on low mass protostars. To fill up this gap, we carried out a complete
spectral survey of the bands at 3, 2, 1 and 0.8 mm towards the solar type
protostar IRAS16293-2422. The observations covered about 200\,GHz and were
obtained with the IRAM-30m and JCMT-15m telescopes. Particular attention was
devoted to the inter-calibration of the obtained spectra with previous
observations. All the lines detected with more than 3 sigma and free from
obvious blending effects were fitted with Gaussians to estimate their basic
kinematic properties. More than 4000 lines were detected (with sigma \geq 3)
and identified, yielding a line density of approximatively 20 lines per GHz,
comparable to previous surveys in massive hot cores. The vast majority (~2/3)
of the lines are weak and due to complex organic molecules. The analysis of the
profiles of more than 1000 lines belonging 70 species firmly establishes the
presence of two distinct velocity components, associated with the two objects,
A and B, forming the IRAS16293-2422 binary system. In the source A, the line
widths of several species increase with the upper level energy of the
transition, a behavior compatible with gas infalling towards a ~1 Mo object.
The source B, which does not show this effect, might have a much lower central
mass of ~0.1 Mo. The difference in the rest velocities of both objects is
consistent with the hypothesis that the source B rotates around the source A.
This spectral survey, although obtained with single-dish telescope with a low
spatial resolution, allows to separate the emission from 2 different
components, thanks to the large number of lines detected. The data of the
survey are public and can be retrieved on the web site
http://www-laog.obs.ujf-grenoble.fr/heberges/timasss.Comment: 41 pages (26 pages of online Tables), 7 Tables and 6 Figure
- …