12 research outputs found

    Using a Modified Purse Seine to Collect and Monitor Estuarine Fishes

    Get PDF
    We developed a modified purse seine to sample shallow water estuarine habitats and evaluated the efficacy of using this gear as a tool for monitoring estuarine fish populations in Tampa Bay, Florida. The purse seine (183-m long, 5.2 m deep and 50-mm stretch mesh nylon throughout) was easily deployed and retrieved by a 7 m flat-bottomed, bow-driven boat with a hydraulic wench and aluminum pursing davit. Retention rates of pinfish (Lagodon rhomboides) marked and released into 35 net sets averaged 49% (range 9-100%). Retention rates were not significantly influenced by sets over vegetated and unvegetated bottom types, various water depths from 1-3.3m and sets with and without bycatch. We then used the modified purse seine to sample fishes at 550 randomly selected sites in Tampa Bay from January 1997 to December 1998. Sampled habitats ranged from 1.0 to 3.3 m deep and included seagrass beds and non-vegetated sand or mud bottoms. Benthic, demersal, and pelagic fishes were captured, indicating the purse seine effectively sampled the entire water column. A wide size range of fishes was collected including pre-recruitment sizes of several economically important species. The ability of purse seines to fish independent of adjacent shorelines allowed us to sample nearshore waters that included large expanses of sea grass meadow

    Spatial and Size Distribution of Red Drum Caught and Released in Tampa Bay, Florida, and Factors Associated with Post-Release Hooking Mortality

    Get PDF
    The recreational fishery for red drum (Sciaenops ocellatus) in Florida is unusual in that most red drum targeted are immature and caught within estuarine waters. Current state regulations rely exclusively on bag and size limits, resulting in the release of a large proportion of captured individuals. This study employed hook-and-line sampling conducted monthly in Tampa Bay, Florida and catch-and-release mortality experiments to determine the spatial and size distribution of red drum and the mortality rate of released fish, respectively. Of the 1,405 red drum collected, more than 70% were smaller than the minimum legal size (457 mm standard length (SL)). Size structure of red drum varied spatially and reflected ontogenetic patterns of habitat use. Data collected during catch-and-release mortality experiments were analyzed to identify factors associated with mortality. A total of 251 red drum (203-618 mm SL) were caught and held for 48 h during 9 experiments, with an overall mortality rate of 5.6%. Higher water temperature and anatomical hook position were significantly correlated with mortality; lip-hooked fish had the lowest mortality rate, while throat-hooked fish had the highest. Although hook type was not correlated with mortality, it did influence whether a fish was deep-hooked. Fish caught by J-hooks were more likely to be deep-hooked than those caught by circle hooks. Catch-and-release fishing is an effective management tool for reducing take but may contribute to short-term mortality, especially in warm, subtropical estuaries

    Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ13C and δ15N)

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 3 (2015): e874, doi:10.7717/peerj.874.Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions.Funding was provided by a grant to CD Stallings and TS Switzer from the National Oceanic and Atmospheric Administration, Cooperative Research Program (NA12NMF4540081)

    Effects of Preservation Methods of Muscle Tissue from Upper-trophic Level Reef Fishes on Stable Isotope Values (δ\u3csup\u3e13\u3c/sup\u3eC and δ\u3csup\u3e15\u3c/sup\u3eN)

    No full text
    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions

    Effects of Preservation Methods of Muscle Tissue from Upper-trophic Level Reef Fishes on Stable Isotope Values (δ\u3csup\u3e13\u3c/sup\u3eC and δ\u3csup\u3e15\u3c/sup\u3eN)

    Get PDF
    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ13C and δ15N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ15N values in nearly all comparisons. Ethanol also had strong effects on the δ13C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and corresponding low levels of mass loss with a substantial change in the isotope value of the sample. Regardless of mechanism, it was evident that accounting for offsets caused by different preservation methods was not possible using the standard correction. Caution is warranted when interpreting the results from specimens stored in either ethanol or salt, especially when using those from multiple preservation techniques. We suggest the use of ice as the preferred preservation technique for muscle tissue when conducting stable isotope analysis as it is widely available, inexpensive, easy to transport and did not impart a significant offset in measured isotopic values. Our results provide additional evidence that preservation effects on stable isotope analysis can be highly contextual, thus requiring their effects to be measured and understood for each species and isotopic ratio of interest before addressing research questions

    Genetic Evidence Supports a Range Extension for the Brazilian Cownose Ray \u3ci\u3eRhinoptera brasiliensis\u3c/i\u3e In the Western North Atlantic

    No full text
    We report 24 new records of the Brazilian cownose ray Rhinoptera brasiliensis outside its accepted geographic range. Sequencing of a 442-base pair portion of the mitochondrial NADH dehydrogenase subunit 2 gene for 282 Rhinoptera samples revealed eight records off the east coast of the USA and 16 from the eastern Gulf of Mexico. Both sexes of all life stages were documented in all seasons over multiple years in the Indian River and Lake Worth lagoons, Florida, indicating that their range extends further in the western North Atlantic than previously described

    Structure of the toxic core of α-synuclein from invisible crystals

    No full text
    The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson’s disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears responsible for amyloid formation and cytotoxicity of α-synuclein. Here we report crystals of NACore having dimensions smaller than the wavelength of visible light and thus invisible by optical microscopy. Thousands of times too small for structure determination by synchrotron x-ray diffraction, these crystals have yielded an atomic resolution structure by the frontier method of Micro-Electron Diffraction. The 1.4 Å resolution structure demonstrates for the first time that this method can determine previously unknown protein structures and here yields the highest resolution achieved by any cryo-electron microscopy method to date. The structure reveals protofibrils built of pairs of face-to-face β-sheets. X-ray fiber diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, opening opportunities for design of inhibitors of α-synuclein fibrils
    corecore