68 research outputs found

    Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

    Get PDF
    Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9-107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4-22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100-200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8-64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locu

    Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls

    Get PDF
    Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9–107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4–22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100–200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8–64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus

    Hospital inpatient costs for single ventricle patients surviving the Fontan procedure

    Get PDF
    We estimated the inpatient resource use for a Fontan patient from birth to adulthood and explored factors that might induce cost differences (2014 US dollar). Inpatient costing records from 4 hospitals with greatest numbers of Fontan patients in Australia and New Zealand were linked with the Fontan registry database. Inpatient records between July 1995 and September 2014 for 420 Fontan patients were linked, and the most frequent primary diagnoses were hypoplastic left heart syndrome (20.7%), tricuspid atresia (19.7%), and double inlet left ventricle (17.1%). The mean hospital cost for a Fontan patient from birth to 18 years of age was estimated to be 390,601(95390,601 (95% confidence interval [CI] 264,703 to 516,499),correspondingto164(95516,499), corresponding to 164 (95% CI 98 to 231) inpatient days. The cost incurred from birth through to Fontan completion (the staged procedures period) was 219,482 (95% CI 202,410to202,410 to 236,553) and the cost thereafter over 15 years was 146,820(95146,820 (95% CI 44,409 to $249,231), corresponding to 82 (95% CI 72 to 92) and 65 (95% CI 18 to 112) inpatient days, respectively. Costs were higher in male and hypoplastic left heart syndrome patients in the staged procedures period (

    Hepatic and renal end-organ damage in the Fontan circulation: a report from the Australian and New Zealand Fontan Registry

    Get PDF
    Background: Hepatic and renal dysfunction have been observed in survivors of the Fontan procedure, however their incidence and associated factors remain poorly defined. Methods: A total of 152 participants from a Registry of 1528 patients underwent abdominal ultrasound, transient elastography (FibroScan), serum fibrosis score (FibroTest), in vivo Tc-99m DTPA measurement of glomerular filtration rate (mGFR), and urine albumin-creatinine ratio (ACR). Results: Mean age and time since Fontan were 19.8 ± 9.3 and 14.1 ± 7.6 years, respectively. Features suggestive of hepatic fibrosis were observed on ultrasound in 87/143 (61%) and no patient was diagnosed with hepatocellular carcinoma. FibroScan median kPa was ≥10 in 117/133 (88%), ≥15 in 75/133 (56%), and ≥20 in 41/133 (31%). Fifty-four patients (54/118, 46%) had a FibroTest score ≥0.49 (equivalent to ≥F2 fibrosis). FibroTest score correlated with FibroScan value (r = 0.24, p = 0.015) and ACR (r = 0.29, p = 0.002), and patients with ultrasound features of hepatic fibrosis had a higher FibroScan median kPa (19.5 vs 15.4, p = 0.002). Renal impairment was mild (mGFR 60–89 ml/min/1.73 m) in 46/131 (35%) and moderate (mGFR 30–59 ml/min/1.73 m) in 3/131 (2%). Microalbuminuria was detected in 52/139 participants (37%). By multivariable analysis, time since Fontan was associated with increased FibroScan median kPa (β = 0.89, 95% CI 0.54–1.25, p = 0.002) and decreased mGFR (β = −0.77, 95% CI −1.29–0.24, p = 0.005). Conclusions: In the second decade after Fontan hepatic and renal structure and function are abnormal in a significant number of patients: close to 60% have ultrasonographic evidence of structural hepatic abnormalities, 46% have elevated serum hepatic fibrosis scores, and 57% have either reduced glomerular filtration rate or microalbuminuria. Hepatic and renal function should be monitored for potential impacts on outcomes after Fontan completion

    Investigation of Association between PFO Complicated by Cryptogenic Stroke and a Common Variant of the Cardiac Transcription Factor GATA4

    Get PDF
    Patent foramen ovale (PFO) is associated with clinical conditions including cryptogenic stroke, migraine and varicose veins. Data from studies in humans and mouse suggest that PFO and the secundum form of atrial septal defect (ASDII) exist in an anatomical continuum of septal dysmorphogenesis with a common genetic basis. Mutations in multiple members of the evolutionarily conserved cardiac transcription factor network, including GATA4, cause or predispose to ASDII and PFO. Here, we assessed whether the most prevalent variant of the GATA4 gene, S377G, was significantly associated with PFO or ASD. Our analysis of world indigenous populations showed that GATA4 S377G was largely Caucasian-specific, and so subjects were restricted to those of Caucasian descent. To select for patients with larger PFO, we limited our analysis to those with cryptogenic stroke in which PFO was a subsequent finding. In an initial study of Australian subjects, we observed a weak association between GATA4 S377G and PFO/Stroke relative to Caucasian controls in whom ASD and PFO had been excluded (OR = 2.16; p = 0.02). However, in a follow up study of German Caucasians no association was found with either PFO or ASD. Analysis of combined Australian and German data confirmed the lack of a significant association. Thus, the common GATA4 variant S377G is likely to be relatively benign in terms of its participation in CHD and PFO/Stroke

    Statistical analysis plan for the NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) trial

    Get PDF
    Background: The NITric oxide during cardiopulmonary bypass (CPB) to improve Recovery in Infants with Congenital heart defects (NITRIC) trial, a 1320-patient, multicentre, randomised controlled trial, is aiming to improve survival free of ventilation after CPB by using nitric oxide delivered into the oxygenator of the CPB. Objective: To provide a statistical analysis plan before completion of patient recruitment and data monitoring. Final analyses for this study will adhere to this statistical analysis plan, which details all key pre-planned analyses. Stata scripts for analyses have been prepared alongside this statistical analysis plan. Methods: The statistical analysis plan was designed collaboratively by the chief investigators and trial statistician and builds on the previously published study protocol. All authors remain blinded to treatment allocation. Detail is provided on statistical analyses including cohort description, analysis of primary and secondary outcomes and adverse events. Statistical methods to compare outcomes are planned in detail to ensure methods are verifiable and reproducible. Results: The statistical analysis plan developed provides the trial outline, list of mock tables, and analysis scripts. The plan describes statistical analyses on cohort and baseline description, primary and secondary outcome analyses, process of care measures, physiological descriptors, and safety and adverse event reporting. We define the pre-specified subgroup analyses and the respective statistical tests used to compare subgroups. Conclusion: The statistical analysis plan for the NITRIC trial establishes detailed pre-planned analyses alongside Stata scripts to analyse the largest trial in the field of neonatal and paediatric heart surgery. The plan ensures standards for trial analysis validity aiming to minimise bias of analyses. Trial registration: ACTRN12617000821392

    NAD deficiency, congenital malformations, and niacin supplementation

    Get PDF
    BACKGROUND: Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. METHODS: We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 system. RESULTS: Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. CONCLUSIONS: Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries.

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10 CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 nea

    Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot

    Get PDF
    Rationale: Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. Objective: We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. Methods and Results: Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10−8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%–6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%–3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. Conclusions: The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients
    corecore