21 research outputs found

    Impact of wastewater treatment plant effluent on the winter thermal regime of two urban Colorado South Platte tributaries

    Get PDF
    Wastewater treatment plant effluent can increase stream water temperature from near freezing to 5°C–12°C in winter months. Recent research in the South Platte River Basin in Colorado showed that this warming alters the reproductive timing of some fishes. However, the spatial extent and magnitude of this warming are unknown. Thus, we created winter water temperature models both upstream and downstream of effluent inputs for two urban tributaries of the South Platte River, the Big Thompson River, and St. Vrain Creek. We examined the influence of air temperature, discharge, effluent temperature, and distance downstream on water temperature over the winter period (December–February). The models were also used to predict water temperature in the absence of effluent and based on air temperature predictions in 2052 and 2082. Effluent temperature was the largest driver of water temperature downstream of the effluent, while the impact of air temperature was comparatively small. Streams cooled after an initially sharp temperature increase, though were still predicted to be ∼2°C greater than they would be in the absence of effluent at ∼0.5 km. Predicted air temperatures in 2052 and 2082 had a negligible effect on water temperature, suggesting that mitigating effluent temperature is key to protecting the winter thermal regimes of effluent-impacted rivers. Our models can be used to gain insight into the magnitude and downstream extent of the impact of effluent temperature on small urban streams in winter and provide a baseline for models in other watersheds and at larger scales

    Population genetics reveals bidirectional fish movement across the Continental Divide via an interbasin water transfer

    Get PDF
    Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River on the east side of the Continental Divide. We used single nucleotide polymorphisms to characterize population genetic structure in cutthroat trout (Oncorhynchus clarkii) and determine if fish utilize the Grand Ditch as a movement corridor. Samples were collected from two sites on the west side and three sites on the east side of the Continental Divide. We identified two or three genetic clusters, and relative migration rates and spatial distributions of admixed individuals indicated that the Grand Ditch facilitated bidirectional fish movement across the Continental Divide, a major biogeographic barrier. Previous studies have demonstrated ecological impacts of interbasin water transfers, but our study is one of the first to use genetics to understand how interbasin water transfers affect connectivity between previously isolated watersheds. We also discuss implications on native trout management and balancing water demand and biodiversity conservation

    An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity

    Get PDF
    1. Increased need for water and projected declines in precipitation due to climate change could leave waterways increasingly dominated by wastewater effluent. Understanding how components of wastewater influence fish populations is necessary for effective conservation and management. Despite research demonstrating effects of oestrogens, such as 17α-ethynylestradiol (EE2), on fish physiology and population failure, the generality of population responses is uncertain and the underlying mechanisms affecting population declines are unknown. EE2 is the steroid oestrogen in human contraceptive pills and has been measured up to 11 ng L-1in the environment. 2. We identify disrupted population dynamics due to direct and transgenerational effects on survival and fecundity. We conducted a year-long study on three generations of fathead minnows Pimephales promelas Rafinesque in aquatic mesocosms and laboratory aquaria. We added environmentally relevant concentrations of EE2 daily using a static renewal, which approximates a pulsed exposure that fish experience in natural systems. 3. EE2 (3·2 ngL-1) reduced F0 male survival to 17% (48% lower than controls) and juvenile production by 40% compared to controls. F1 fish continuously exposed to EE2 failed to reproduce, and reproduction of the F1 transferred to clean water was 70–99% less than controls. 4. F2 larval survival, exposed only as germ cells in their parents, was reduced by 51–97% compared to controls. The indirect effect on F2 survival suggests the possibility of transgenerational effects of EE2. 5. Synthesis and applications. Our results suggest that fish populations exposed to environmentally relevant 17α-ethynylestradiol (EE2) concentrations may not recover from exposure. Management of short-lived highly fecund fishes should be prioritized to protect fish from the embryo through gonadal differentiation. Reducing effluent will not be possible in many situations; hence, conservation of breeding and rearing habitat in unpolluted tributaries or reaches is needed. Additionally, resource managers could enhance habitat connectivity in rivers to facilitate immigration. Finally, investment in advanced wastewater processing technology should improve removal of bioactive chemicals such as EE2. Our results provide a baseline for regulatory agencies to consider when assessing the ecological effects of environmental oestrogens, and our approach to evaluating population-level effects could be widely applied to other contaminants

    Survival and reproduction of Myxobolus cerebralis-resistant rainbow trout introduced to the Colorado river and increased resistance of age-0 progeny.

    No full text
    Myxobolus cerebralis caused severe declines in rainbow trout populations across Colorado following its introduction in the 1980s. One promising approach for the recovery of Colorado's rainbow trout populations has been the production of rainbow trout that are genetically resistant to the parasite. We introduced one of these resistant crosses, known as the GR×CRR (cross between the German Rainbow [GR] and Colorado River Rainbow [CRR] trout strains), to the upper Colorado River. The abundance, survival, and growth of the stocked GR×CRR population was examined to determine if GR×CRRs had contributed offspring to the age-0 population, and determine whether these offspring displayed increased resistance and survival characteristics compared to their wild CRR counterparts. Apparent survival of the introduced GR×CRR over the entire study period was estimated to be 0.007 (±0.001). Despite low survival of the GR×CRRs, age-0 progeny of the GR×CRR were encountered in years 2008 through 2011. Genetic assignments revealed a shift in the genetic composition of the rainbow trout fry population over time, with CRR fish comprising the entirety of the fry population in 2007, and GR-cross fish comprising nearly 80% of the fry population in 2011. A decrease in average infection severity (myxospores fish-1) was observed concurrent with the shift in the genetic composition of the rainbow trout fry population, decreasing from an average of 47,708 (±8,950) myxospores fish-1 in 2009 to 2,672 (±4,379) myxospores fish-1 in 2011. Results from this experiment suggest that the GR×CRR can survive and reproduce in rivers with a high prevalence of M. cerebralis. In addition, reduced myxospore burdens in age-0 fish indicated that stocking this cross may ultimately lead to an overall reduction in infection prevalence and severity in the salmonid populations of the upper Colorado River

    Factors Affecting Post-Challenge Survival of Flavobacterium psychrophilum in Susceptible Rainbow Trout from the Literature

    No full text
    Infectious bacterial pathogens are a concern for aquaculture as estimates suggest that billions of US dollars are lost annually in aquaculture due to disease. One of the most prevalent salmonid pathogens is the bacterium Flavobacterium psychrophilum that causes bacterial coldwater disease. We reviewed the published F. psychrophilum literature and conducted a Bayesian analysis to examine large-scale patterns in rainbow trout (Oncorhynchus mykiss) mortality associated with laboratory challenge. We incorporated factors that were common across a majority of the laboratory exposure studies and these included bacterial dose, culture time, exposure method, bacterial isolate, experimental duration, and fish weight. The comparison showed that injection as the exposure method produced higher mortality than bath immersion, bacterial isolates differed in their effect on mortality, and bacterial dose has an interactive effect with fish weight and exposure method. Our comparison allows for inference on factors affecting rainbow trout mortality due to exposure to F. psychrophilum and suggests avenues to further optimize research protocols to better reach study goals

    The upper Colorado River study site.

    No full text
    <p>The 4.2-57 at the upstream end and Sheriff Creek at the downstream end. Locations in which fish were sampled in 2006 and 2007 (box), fry were sampled in all years of the study (triangles), and fish were stocked in 2006 (circles) and 2010 (squares) are shown.</p

    Proportion (SE bars) of the brown trout and rainbow trout fry populations exhibiting signs of <i>M. cerebralis</i> infection.

    No full text
    <p>Fry were collected from the upper Colorado River in 2009 (brown trout: N = 277; rainbow trout: N = 29), 2010 (brown trout: N = 64; rainbow trout: N = 41), and 2011 (brown trout: N = 138; rainbow trout: N = 19).</p

    Proportion of the wild rainbow trout fry population assigned as CRR, GR-cross, or unknown.

    No full text
    <p>Fry were collected from the upper Colorado River in 2007 (N = 16), 2008 (N = 21), 2009 (N = 79), 2010 (N = 57), and 2011 (N = 42). Assignments were made when the posterior probability was ≥0.80 using the microsatellite marker genetic differentiation test.</p

    Incorporating antenna detections into abundance estimates of fish

    No full text
    Autonomous passive integrated transponder (PIT) tag antennas are commonly used to detect fish marked with PIT tags but cannot detect unmarked fish, creating challenges for abundance estimation. Here we describe an approach to estimate abundance from paired physical capture and antenna detection data in closed and open mark-recapture models. Additionally, for open models, we develop an approach that incorporates uncertainty in fish size, because fish size changes through time (as fish grow bigger) but is unknown if fish are not physically captured (e.g., only detected on antennas). Incorporation of size uncertainty allows for estimation of size-specific abundances and demonstrates a generally useful method for obtaining state-specific abundances estimates under state uncertainty. Simulation studies comparing models with and without antenna detections illustrate that the benefit of our approach increases as a larger proportion of the population is marked. When applied to two field data sets, our approach to incorporating antenna detections reduced uncertainty in abundance substantially. We conclude that PIT antennas hold great potential for improving abundance estimation, despite the challenges they present.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore