109 research outputs found

    On formal specification of emergent behaviours in swarm robotic systems

    Get PDF
    It is a characteristic of swarm robotics that specifying overall emergent swarm behaviours in terms of the low-level behaviours of individual robots is very difficult. Yet if swarm robotics is to make the transition from the laboratory to real-world engineering realisation we need such specifications. This paper explores the use of temporal logic to formally specify, and possibly also prove, the emergent behaviours of a robotic swarm. The paper makes use of a simplified wireless connected swarm as a case study with which to illustrate the approach. Such a formal approach could be an important step toward a disciplined design methodology for swarm robotics

    ELSA in industrial robotics

    Get PDF
    Purpose of ReviewIndustry is changing; converging technologies allow a fourth Industrial Revolution, where it is envisaged that robots will work alongside humans. We investigate how the research community is responding to the ethical, legal, and social aspects of industrial robots, with a primary focus on manufacturing industry.Recent FindingsThe literature shows considerable interest in the impact of robotics and automation on industry. This interest spans many disciplines, which is to be expected given that the ELS impacts of industrial robotics may be profound in their depth and far-reaching in their scope.SummaryWe suggest that the increasing importance of human-robot interaction (HRI) reduces the differentiation between industrial robotics and other robotic domains and that the main challenges to successful adoption for the benefit of human life are above all political and economic. Emerging standards and legal frameworks may scaffold this success, but it is apparent that getting it wrong might have repercussions that last for generations

    Validation of the ADAMO Care Watch for step counting in older adults

    Get PDF
    Background: Accurate measurement devices are required to objectively quantify physical activity. Wearable activity monitors, such as pedometers, may serve as affordable and feasible instruments for measuring physical activity levels in older adults during their normal activities of daily living. Currently few available accelerometer-based steps counting devices have been shown to be accurate at slow walking speeds, therefore there is still lacking appropriate devices tailored for slow speed ambulation, typical of older adults. This study aimed to assess the validity of step counting using the pedometer function of the ADAMO Care Watch, containing an embedded algorithm for measuring physical activity in older adults. Methods: Twenty older adults aged ≥ 65 years (mean ± SD, 75±7 years; range, 68–91) and 20 young adults (25±5 years, range 20–40), wore a care watch on each wrist and performed a number of randomly ordered tasks: walking at slow, normal and fast self-paced speeds; a Timed Up and Go test (TUG); a step test and ascending/descending stairs. The criterion measure was the actual number of steps observed, counted with a manual tally counter. Absolute percentage error scores, Intraclass Correlation Coefficients (ICC), and Bland–Altman plots were used to assess validity. Results: ADAMO Care Watch demonstrated high validity during slow and normal speeds (range 0.5–1.5 m/s) showing an absolute error from 1.3% to 1.9% in the older adult group and from 0.7% to 2.7% in the young adult group. The percentage error for the 30-metre walking tasks increased with faster pace in both young adult (17%) and older adult groups (6%). In the TUG test, there was less error in the steps recorded for older adults (1.3% to 2.2%) than the young adults (6.6% to 7.2%). For the total sample, the ICCs for the ADAMO Care Watch for the 30-metre walking tasks at each speed and for the TUG test were ranged between 0.931 to 0.985. Conclusion: These findings provide evidence that the ADAMO Care Watch demonstrated highly accurate measurements of the steps count in all activities, particularly walking at normal and slow speeds. Therefore, these data support the inclusion of the ADAMO Care Watch in clinical applications for measuring the number of steps taken by older adults at normal, slow walking speeds

    Comparative genomics of prevaccination and modern Bordetella pertussis strains

    Get PDF
    Contains fulltext : 89571.pdf (publisher's version ) (Open Access)BACKGROUND: Despite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination. RESULTS: The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains. CONCLUSIONS: Our work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation

    Design mining microbial fuel cell cascades

    Get PDF
    Microbial fuel cells (MFCs) perform wastewater treatment and electricity production through the conversion of organic matter using microorganisms. For practical applications, it has been suggested that greater efficiency can be achieved by arranging multiple MFC units into physical stacks in a cascade with feedstock flowing sequentially between units. In this article, we investigate the use of cooperative coevolution to physically explore and optimise (potentially) heterogeneous MFC designs in a cascade, i.e., without simulation. Conductive structures are 3D printed and inserted into the anodic chamber of each MFC unit, augmenting a carbon fibre veil anode and affecting the hydrodynamics, including the feedstock volume and hydraulic retention time, as well as providing unique habitats for microbial colonisation. We show that it is possible to use design mining to identify new conductive inserts that increase both the cascade power output and power density

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes

    Get PDF
    The ecological implications of biotic interactions, such as predator-prey relationships, are often context-dependent. Comparative functional responses analysis can be used under different abiotic contexts to improve understanding and prediction of the ecological impact of invasive species. Pterois volitans (Lionfish) [Linnaeus 1758] is an established invasive species in the Caribbean and Gulf of Mexico, with a more recent invasion into the Mediterranean. Lionfish are generalist predators that impact a wide range of commercial and non-commercial species. Functional response analysis was employed to quantify interaction strength between lionfish and a generic prey species, the shrimp (Paleomonetes varians) [Leach 1814], under the contexts of differing temperature, habitat complexity and light wavelength. Lionfish have prey population destabilising Type II functional responses under all contexts examined. Significantly more prey were consumed at 26 °C than at 22 °C. Habitat complexity did not significantly alter the functional response parameters. Significantly more prey were consumed under white light and blue light than under red light. Attack rate was significantly higher under white light than under blue or red light. Light wavelength did not significantly change handling times. The impacts on prey populations through feeding rates may increase with concomitant temperature increase. As attack rates are very high at low habitat complexity this may elucidate the cause of high impact upon degraded reef ecosystems with low-density prey populations, although there was little protection conferred through habitat complexity. Only red light (i.e. dark) afforded any reduction in predation pressure. Management initiatives should account for these environmental factors when planning mitigation and prevention strategies
    corecore