17 research outputs found

    Resonance effects on the dynamics of dense granular beds: achieving optimal energy transfer in vibrated granular systems

    Get PDF
    Using a combination of experimental techniques and discrete particle method simulations, we investigate the resonant behaviour of a dense, vibrated granular system. We demonstrate that a bed of particles driven by a vibrating plate may exhibit marked differences in its internal energy dependent on the specific frequency at which it is driven, even if the energy corresponding to the oscillations driving the system is held constant and the acceleration provided by the base remains consistently significantly higher than the gravitational acceleration, g. We show that these differences in the efficiency of energy transfer to the granular system can be explained by the existence of resonances between the bed's bulk motion and that of the oscillating plate driving the system. We systematically study the dependency of the observed resonant behaviour on the system's main, controllable parameters and, based on the results obtained, propose a simple empirical model capable of determining, for a given system, the points in parameter space for which optimal energy transfer may be achieved

    Segregation in binary and polydisperse stirred media mills and its role on grinding effectiveness

    Get PDF
    Most industrial vertical stirred mills contain a non-uniform set of grinding media sizes. However, this fact is often ignored in simulations, which mostly use monodispersed media. The paper explores the fundamental dynamics of vertical mills when using multiple sizes of grinding media, by using DEM simulation. Our results suggest that by including both large and small media, one may be able to optimise its performance in several manners. The energy going into the contacts can be increased by including a second size, leading to more effective grinding. Including smaller media can also reduce the power draw of the mill, increasing the efficiency and sustainability of the mill. Finally, the natural segregation between different sizes creates different types of collision which grind different particle sizes more effectively. Segregation leads to smaller media at the bottom, so continuous processes can be optimised for fine grinding by feeding from the top, where the larger media are. This further enables control of the resulting product specifications

    Competition between geometrically induced and density-driven segregation mechanisms in vibrofluidized granular systems

    No full text
    The behaviors of granular systems are sensitive to a wide variety of particle properties, including size, density, elasticity, and shape. Differences in any of these properties between particles in a granular mixture may lead to segregation, or “demixing,” a process of great industrial relevance. Despite the known influence of particle geometry in granular systems, a considerable fraction of research into these systems concerns only uniformly spherical particles. We address, for the case of vertically vibrated granular systems, the important question of whether the introduction of differing particle geometries entirely invalidates our existing knowledge based on purely spherical granulates, or whether current models may simply be adapted to account for the effects of particle shape. We demonstrate that while shape effects can indeed influence the dynamical and segregative behaviors of a granular system, the segregative mechanisms associated with particle geometry are decidedly secondary to those related to particle density. The relevant control parameters determining the extent of geometrically induced segregation are established. Finally, a manner in which shape effects may be accounted for in simulations utilizing purely spherical particles is proposed

    Effects of packing density on the segregative behaviors of granular systems

    Get PDF
    We present results concerning the important role of system packing in the processes of density- and inelasticity-induced segregation in vibrofluidized binary granular beds. Data are acquired through a combination of experimental results acquired from positron emission particle tracking and simulations performed using the discrete particle method. It is found that segregation due to inelasticity differences between particle species is most pronounced in moderately dense systems, yet still exerts a significant effect in all but the highest density systems. Results concerning segregation due to disparities in particles’ material densities show that the maximal degree to which a system can achieve segregation is directly related to the density of the system, while the rate at which segregation occurs shows an inverse relation. Based on this observation, a method of minimizing the time and energy requirements associated with producing a fully segregated system is proposed

    Maximizing energy transfer in vibrofluidized granular systems

    No full text
    Using discrete particle simulations validated by experimental data acquired using the positron emission particle tracking technique, we study the efficiency of energy transfer from a vibrating wall to a system of discrete, macroscopic particles. We demonstrate that even for a fixed input energy from the wall, energy conveyed to the granular system under excitation may vary significantly dependent on the frequency and amplitude of the driving oscillations. We investigate the manner in which the efficiency with which energy is transferred to the system depends on the system variables and determine the key control parameters governing the optimization of this energy transfer. A mechanism capable of explaining our results is proposed, and the implications of our findings in the research field of granular dynamics as well as their possible utilization in industrial applications are discussed

    Influence of thermal convection on density segregation in a vibrated binary granular system

    Get PDF
    Using a combination of experimental results and discrete particle method simulations, the role of buoyancy-driven convection in the segregative behavior of a three-dimensional, binary granular system is investigated. A relationship between convective motion and segregation intensity is presented, and a qualitative explanation for this behavior is proposed. This study also provides an insight into the role of diffusive behavior in the segregation of a granular bed in the convective regime. The results of this work strongly imply the possibility that, for an adequately fluidized granular bed, the degree of segregation may be indirectly controlled through the adjustment of the system's driving parameters, or the dissipative properties of the system's side-boundaries
    corecore