8,681 research outputs found
Knowledge resources for university spinoffs: the role of the academic entrepreneur
The article discusses the commercialization of the scientific and technological knowledge that originates at universities. While this commercialization has been credited as fostering economic growth, innovation, and wealth creation, the processes by which academic entrepreneurs build organizations to create this wealth has been unexplored. The authors use a multiple-case study design on three human pharmaceutical biotechnology spinoffs to determine the ways in which university spinoffs become successful
Basic science behind the cardiovascular benefits of exercise
Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5–20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be
Basic science behind the cardiovascular benefits of exercise
Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5–20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be
Basic science behind the cardiovascular benefits of exercise
Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5–20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be
Basic science behind the cardiovascular benefits of exercise
Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5–20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be
Did exposure to a severe outbreak of pandemic influenza in 1918 impact on long-term survival?
CAUL read and publish agreement 2022fals
Clinician preference instrumental variable analysis of the effectiveness of magnesium supplementation for atrial fibrillation prophylaxis in critical care
Atrial fibrillation is a frequently encountered condition in critical illness and causes adverse effects including haemodynamic decompensation, stroke and prolonged hospital stay. It is a common practice in critical care to supplement serum magnesium for the purpose of preventing episodes of atrial fibrillation. However, no randomised studies support this practice in the non-cardiac surgery critical care population, and the effectiveness of magnesium supplementation is unclear. We sought to investigate the effectiveness of magnesium supplementation in preventing the onset of atrial fibrillation in a mixed critical care population. We conducted a single centre retrospective observational study of adult critical care patients. We utilised a natural experiment design, using the supplementation preference of the bedside critical care nurse as an instrumental variable. Using routinely collected electronic patient data, magnesium supplementation opportunities were defined and linked to the bedside nurse. Nurse preference for administering magnesium was obtained using multilevel modelling. The results were used to define "liberal" and "restrictive" supplementation groups, which were inputted into an instrumental variable regression to obtain an estimate of the effect of magnesium supplementation. 9114 magnesium supplementation opportunities were analysed, representing 2137 critical care admissions for 1914 patients. There was significant variation in magnesium supplementation practices attributable to the individual nurse, after accounting for covariates. The instrumental variable analysis showed magnesium supplementation was associated with a 3% decreased relative risk of experiencing an atrial fibrillation event (95% CI − 0.06 to − 0.004, p = 0.03). This study supports the strategy of routine supplementation, but further work is required to identify optimal serum magnesium targets for atrial fibrillation prophylaxis
Digit-only sauropod pes trackways from China - evidence of swimming or a preservational phenomenon?
For more than 70 years unusual sauropod trackways have played a pivotal role in debates about the swimming ability of sauropods. Most claims that sauropods could swim have been based on manus-only or manus-dominated trackways. However none of these incomplete trackways has been entirely convincing, and most have proved to be taphonomic artifacts, either undertracks or the result of differential depth of penetration of manus and pes tracks, but otherwise showed the typical pattern of normal walking trackways. Here we report an assemblage of unusual sauropod tracks from the Lower Cretaceous Hekou Group of Gansu Province, northern China, characterized by the preservation of only the pes claw traces, that we interpret as having been left by walking, not buoyant or swimming, individuals. They are interpreted as the result of animals moving on a soft mud-silt substrate, projecting their claws deeply to register their traces on an underlying sand layer where they gained more grip during progression. Other sauropod walking trackways on the same surface with both pes and manus traces preserved, were probably left earlier on relatively firm substrates that predated the deposition of soft mud and silt . Presently, there is no convincing evidence of swimming sauropods from their trackways, which is not to say that sauropods did not swim at all
Why don't serum vitamin D concentrations associate with BMD by DXA? A case of being 'bound' to the wrong assay? Implications for vitamin D screening.
BACKGROUND: The association between bone mineral density (BMD) and serum25-hydroxyvitamin D (25(OH)D) concentration is weak, particularly in certain races (eg, BlackAfrican vs Caucasian) and in athletic populations. We aimed to examine if bioavailable vitamin D rather than serum 25(OH)D was related to markers of bone health within a racially diverse athletic population. METHODS: In 604 male athletes (Arab (n=327), Asian (n=48), Black(n=108), Caucasian (n=53)and Hispanic (n=68)), we measured total 25(OH)D, vitamin D-binding protein and BMD by DXA. Bioavailable vitamin D was calculated using the free hormone hypothesis. RESULTS: From 604 athletes, 21.5% (n=130) demonstrated severe 25(OH)D deficiency, 37.1% (n=224) deficiency, 26% (n=157) insufficiency and 15.4% (n=93) sufficiency. Serum 25(OH)D concentrations were not associated with BMD at any site. After adjusting for age and race, bioavailable vitamin D was associated with BMD (spine, neck and hip). Mean serum vitamin D binding protein concentrations were not associated with 25(OH)D concentrations (p=0.392). CONCLUSION: Regardless of age or race, bioavailable vitamin D and not serum 25(OH)D was associated with BMD in a racially diverse athletic population. If vitamin D screening is warranted, clinicians should use appropriate assays to calculate vitamin D binding protein and bioavailable vitamin D levels concentrations than serum 25(OH)D. In turn, prophylactic vitamin D supplementation to 'correct' insufficient athletes should not be based on serum 25(OH)D measures
- …