13,997 research outputs found

    Revisiting Chandler on the theory of the firm

    Get PDF
    The essay provides a review of Alfred Chandler's contribution to the theory of the firm in his three main works: Strategy and Structure (1962), The Visible Hand (1977) and Scale and Scope (1990). Focusing on the economic components of Chandler's analysis, it examines linkages to subsequent developments in the theory of the firm, including the resource based view. It discusses possible extensions of the Chandlerian perspective incorporating elements of capital market transaction cost theor

    Rising to the challenge: acute stress appraisals and selection centre performance in applicants to postgraduate specialty training in anaesthesia

    Get PDF
    AcceptedArticle in Press© 2015 Springer Science+Business Media Dordrecht The ability to work under pressure is a vital non-technical skill for doctors working in acute medical specialties. Individuals who evaluate potentially stressful situations as challenging rather than threatening may perform better under pressure and be more resilient to stress and burnout. Training programme recruitment processes provide an important opportunity to examine applicants’ reactions to acute stress. In the context of multi-station selection centres for recruitment to anaesthesia training programmes, we investigated the factors influencing candidates’ pre-station challenge/threat evaluations and the extent to which their evaluations predicted subsequent station performance. Candidates evaluated the perceived stress of upcoming stations using a measure of challenge/threat evaluation—the cognitive appraisal ratio (CAR)—and consented to release their demographic details and station scores. Using regression analyses we determined which candidate and station factors predicted variation in the CAR and whether, after accounting for these factors, the CAR predicted candidate performance in the station. The CAR was affected by the nature of the station and candidate gender, but not age, ethnicity, country of training or clinical experience. Candidates perceived stations involving work related tasks as more threatening. After controlling for candidates’ demographic and professional profiles, the CAR significantly predicted station performance: ‘challenge’ evaluations were associated with better performance, though the effect was weak. Our selection centre model can help recruit prospective anaesthetists who are able to rise to the challenge of performing in stressful situations but results do not support the direct use of challenge/threat data for recruitment decisions.Funding was granted as a pilot for selection to acute specialities from the Department of Health (England). M.J.R.’s research post was funded through this grant, as were sessional time allocations for T.C.E.G. All opinions in the manuscript are those of the authors only and recommendations or policy from the DH should not be inferred from this work

    Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes

    Full text link
    Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at the mesoscopic scale. Here, we have discovered that the dynamics of nanotube and graphene resonators is in fact highly exotic. We propose an unprecedented scenario where mechanical dissipation is entirely determined by nonlinear damping. As a striking consequence, the quality factor Q strongly depends on the amplitude of the motion. This scenario is radically different from that of other resonators, whose dissipation is dominated by a linear damping term. We believe that the difference stems from the reduced dimensionality of carbon nanotubes and graphene. Besides, we exploit the nonlinear nature of the damping to improve the figure of merit of nanotube/graphene resonators.Comment: main text with 4 figures, supplementary informatio

    Cellular uptake and imaging studies of gadolinium-loaded single-walled carbon nanotubes

    Get PDF
    postprintThe 18th Joint Annual Meeting of ISMRM-ESMRMB, Stockholm, Sweden, 1-7 May 2010

    Growth dynamics and the evolution of cooperation in microbial populations

    Get PDF
    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure

    Generic properties in some classes of automaton groups

    Full text link
    We prove, for various important classes of Mealy automata, that almost all generated groups have an element of infinite order. In certain cases, it also implies other results such as exponential growth

    General Form of the Color Potential Produced by Color Charges of the Quark

    Full text link
    Constant electric charge ee satisfies the continuity equation μjμ(x)=0\partial_\mu j^{\mu}(x)= 0 where jμ(x)j^\mu(x) is the current density of the electron. However, the Yang-Mills color current density jμa(x)j^{\mu a}(x) of the quark satisfies the equation Dμ[A]jμa(x)=0D_\mu[A] j^{\mu a}(x)= 0 which is not a continuity equation (μjμa(x)0\partial_\mu j^{\mu a}(x)\neq 0) which implies that a color charge qa(t)q^a(t) of the quark is not constant but it is time dependent where a=1,2,...8a=1,2,...8 are color indices. In this paper we derive general form of color potential produced by color charges of the quark. We find that the general form of the color potential produced by the color charges of the quark at rest is given by \Phi^a(x) =A_0^a(t,{\bf x}) =\frac{q^b(t-\frac{r}{c})}{r}\[\frac{{\rm exp}[g\int dr \frac{Q(t-\frac{r}{c})}{r}] -1}{g \int dr \frac{Q(t-\frac{r}{c})}{r}}\]_{ab} where drdr integration is an indefinite integration, ~~ Qab(τ0)=fabdqd(τ0)Q_{ab}(\tau_0)=f^{abd}q^d(\tau_0), ~~r=xX(τ0)r=|{\vec x}-{\vec X}(\tau_0)|, ~~τ0=trc\tau_0=t-\frac{r}{c} is the retarded time, ~~cc is the speed of light, ~~X(τ0){\vec X}(\tau_0) is the position of the quark at the retarded time and the repeated color indices b,db,d(=1,2,...8) are summed. For constant color charge qaq^a we reproduce the Coulomb-like potential Φa(x)=qar\Phi^a(x)=\frac{q^a}{r} which is consistent with the Maxwell theory where constant electric charge ee produces the Coulomb potential Φ(x)=er\Phi(x)=\frac{e}{r}.Comment: Final version, two more sections added, 45 pages latex, accepted for publication in JHE

    Importance of Spin-Orbit Interaction for the Electron Spin Relaxation in Organic Semiconductors

    Get PDF
    Despite the great interest organic spintronics has recently attracted, there is only a partial understanding of the fundamental physics behind electron spin relaxation in organic semiconductors. Mechanisms based on hyperfine interaction have been demonstrated, but the role of the spin-orbit interaction remains elusive. Here, we report muon spin spectroscopy and time-resolved photoluminescence measurements on two series of molecular semiconductors in which the strength of the spin-orbit interaction has been systematically modified with a targeted chemical substitution of different atoms at a particular molecular site. We find that the spin-orbit interaction is a significant source of electron spin relaxation in these materials

    Identification of animal movement patterns using tri-axial magnetometry

    Get PDF
    BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry

    State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

    Full text link
    Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information
    corecore